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Reality: The rec sys shapes the content landscape.
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Key Driver: Content Creator Incentives
Content creator

Content creator 

Recommend video that maximizes user engagement

This work: The design of a rec sys implicitly influences 
the content landscape via creator incentives. 

Creators strategically design content to be recommended.

Mainstream content 

Specialized (niche) content 



Our contribution

We model content creator competition as a high-dimensional game.

We characterize how rec sys design affects content specialization at equilibrium.

Rec sys design ≈ embeddings learned by the rec sys   

Mainstream content 

Specialized (niche) content 
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uN ∈ 𝐑≥𝟎
𝐃

P creators

Recommends 1 content 
to each consumer

Each creator strategically selects a D-dimensional content vector. 

j*(𝑢𝑖; [𝑝1, … , 𝑝𝑃]) = 

argmax1 ≤ j ≤ P < pj, 𝑢𝑖＞

N consumersRecommender system

Learns consumer and 
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Creator profit: P(pj | p-j , u1:N  ) = (∑1 ≤ i ≤ N   I[ argmax1 ≤ j’ ≤ P < pj’, 𝑢𝑖＞ = j ]) - c(pj )

We study Nash equilibria between creators (captures content landscape). 

Creator action space = 𝐑≥𝟎
𝐃 (captures both “genre” p / ||p|| and “quality” ||p||)

Content specialization ≈ richness of set of genres p / ||p|| appearing at equilibrium 

Exposure (# of recommendations won) One-time cost of production

𝑐 𝑝 ∶= | 𝑝 |𝛽 (𝛽 ≥ 1 captures 
level of nonlinearity)
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Our model: high-dimensional content, multi-sided competition, nonlinear costs, etc.   



Our main results

We show how rec sys design shapes whether content specialization occurs.

Result: we characterize when the content landscape consists of > 𝟏 content genre.

• Shows role of learned consumer embeddings

• Shows role of creator costs

• Shows role of matrix factorization parameters (which determine embeddings)

Note: specialization improves content diversity but can reduce content quality (see paper).  
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Formalizing the set of genres in the content landscape
Let μ be a symmetric mixed Nash equilibrium (μ is a distribution over 𝐑≥𝟎

𝐃 ) . 

|Genre(μ)| := { p / ||p|| s.t. p ∈ supp(μ) } (set of genres that arise with some probability)

Example: u1 = [1, 0] and u2 = [0, 1] with P = 2 producers and cost function c(p) = ||p||2
β.  

.          

Genre μ = 1
(no content specialization) 

Genre μ > 1
(content specialization)



Main Theorem: Characterization of |Genre(μ)| = 1 regime

Recall: |Genre(μ)| := { p / ||p|| s.t. p ∈ supp(μ) } and 𝑐 𝑝 = 𝑝
𝛽

.

Let 𝑆 = { < 𝑢1 , 𝑝 >,… < 𝑢𝑁 , 𝑝 > 𝑠. 𝑡. 𝑝 ∈ 𝐑≥𝟎
𝐃 , 𝑝 ≤ 1 }

Let 𝑆𝛽 = { < 𝑢1 , 𝑝 >
𝛽, … < 𝑢𝑁 , 𝑝 >

𝛽 𝑠. 𝑡. 𝑝 ∈ 𝐑≥𝟎
𝐃 , 𝑝 ≤ 1 }

Theorem: There exists an equilibrium μ with |Genre(μ)| = 1 if and only if:

max ෑ

1≤𝑖≤𝑁

𝑦𝑖 𝑠. 𝑡. 𝑦 ∈ 𝑆𝛽 = max ෑ

1≤𝑖≤𝑁

𝑦𝑖 𝑠. 𝑡. 𝑦 ∈ 𝑐𝑜𝑛𝑣(𝑆𝛽)

Whether |Genre(μ)| = 1 relates to convexity of 𝑺𝜷. 



Example: Sets Sß for different embeddings and costs
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Application: Corollaries of the theorem

Specialization occurs when creator costs are sufficiently nonlinear: 

Corollary: There exists ß* such that |Genre(μ)| = 1 ⇔ ß ≤ ß*.

Specialization occurs whenever consumer embeddings are sufficiently heterogeneous.

Corollary: Consider 2 viewers 𝑢1 , 𝑢2 with angle 𝜃 between them. Then: 

ß* = 2

1−cos 𝜃
.

Corollary: Consider any set of viewers. Then:  

ß* ≤
log 𝑁

log 𝑁 −log 𝑍
∗

where 𝒁:= σ𝒊=𝟏
𝑵 𝒖𝒊

| 𝒖𝒊| ∗
.



Application: Matrix factorization hyperparameters
MovieLens-100K dataset: 943 consumers and 100,000 ratings

We run nonnegative matrix factorization with D factors for varying values of D. 
We interpret the learned vectors 𝑢1, … , 𝑢𝑁 ∈ 𝐑≥𝟎

𝐃 as the consumer embeddings.



Application: Matrix factorization hyperparameters
MovieLens-100K dataset: 943 consumers and 100,000 ratings

We run nonnegative matrix factorization with D factors for varying values of D. 
We interpret the learned vectors 𝑢1, … , 𝑢𝑁 ∈ 𝐑≥𝟎

𝐃 as the consumer embeddings.

Upper bound on 𝛽∗ for full datasetEstimate of 𝛽∗ for smaller samples (N users) 

Platform can induce 
specialization by 
increasing # of factors D. 

Intuition: higher D -> greater 
personalization -> more 
content specialization



Conclusion
The design of a rec sys influences the content landscape available on the platform. 

Our contribution:

We model creator competition as a high-dimensional game, and we characterized 
when content specialization occurs. 

Main insight: the embeddings learned by the recommender system shape whether 
content specialization occurs
• Our main theorem related content specialization to a convexity condition. 

Future work: Characterize how other aspects of rec sys design (e.g., ranking across slots, use 
of LLMs for retrieval, summarization vs. recommendation) affect the content landscape.

Specialization improves content diversity but can reduce content quality (see paper).  
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