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Content Producer Incentives Creation of Specialized vs. Mainstream Content ~ Genres of Content at Equilibrium
In a recommender system, the content landscape is implicitly Results: We characterize when specialization by content producers Genre location under no specialization
shaped by the strategic choices of content producers. occurs, uncovering the role of producer costs & user embeddings. We 257 — e
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Theorem: - -
Digital goods p and user vectors u embedded in (R, )P. LetS = {[(uy,p),...{uy,p)] | p €(R,)", HpH <1 } and let SP be the

coordinate powers { [(w, ,p)’, . (uw p)'] 1P € (R IIpll <1 Specialization -> Producer Profit

Economic motivation: equilibrium profit of producers
captures how competitive a marketplace is.

Each user i € [N] has preference vector u; € (R, )P.
[N]has p o (R There exists an equilibrium u with |Genre(u)| = 1 if and only if:

Each producer j € |P] chooses content pj €(R,)". max{ [lie;ny: |y € SPY = max{ [Ticviyi |y € conv(SP) 1.
* Producer action space = (R, ) (all digital goods)

Our characterization relates specialization to the lack of convexity of SP. Proposition (Informal):
Recommender system maximizes inferred value: (See the paper for corollaries with easier-to-interpret bounds.) * With specialization: producers achieve strictly
* (u;,p) (inferred value of good p for user i) positive profit if £ is sufficiently high.
o j*(wy): = argmax;epj (ui ,pj> (personalized recs) | | | | | * No specialization: producers achieve zero profit.
Nonnegative matrix factorization on the MovielLens dataset

Takeaway: specialization can reduce competitiveness
Producer j’s profit function:

P(pj‘p—j:ul:N): = Zie[zv]l[/*(ui) =J] — C(Pj)
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Finding: Increasing the number of factors (dimensions D) used in nonnegative

matrix factorization increases the likelihood that specialization occurs. Summa 'y d nd Discussion
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