Can Probabilistic Feedback Drive User Impacts in Online Platforms?

Jessica Dai*, Bailey Flanigan**, Nika Haghtalab*, Meena Jagadeesan*, Chara Podimata*** (alphabetical order) *University of California, Berkeley **Carnegie Mellon University ***Massachusetts Institute of Technology

Recommendation systems rely on **feedback** from users to learn about their preferences over content.

Can some societal impacts of online platforms be attributed to **differential rates** of feedback across pieces of content?

Bandit algorithm	Platform's recommendation algorithm
Karms	K pieces of content items
ℓ_i : "loss" of an arm i	"quality/utility" of content i
<i>f</i> _i : "feedback probability" of arm <i>i</i>	likelihood of observing ℓ_i when item <i>i</i> is recommended

For rounds t = 1, 2, ... T:

- The algorithm picks one item i_t from the set of items [K] to recommend
- Incur loss ℓ_i \bullet
- With probability f_i , observe the loss ℓ_i

Standard measure of performance is **regret**:

$$R(T) = \mathbb{E}\left[\sum_{t \in [T]} \ell_{i_t, t}\right] - \min_{j \in [K]} \mathbb{E}\left[\sum_{t \in [T]} \ell_{j, t}\right]$$

Monotonicity: does increasing an arm's f_i increase or decrease APC/FOC? Need a precise way to evaluate this.

Example: "own-group" content and APC

- f_i is higher for content that is produced by "similar" people (demographics, ideology)
- Positive monotonicity in APC means users see content from "similar" people more often – related to problems like "echo chambers"

Insights for platform design

- Identify relationships between content and feedback – and what kinds of monotonicities are desirable
- More generally, should formalize & track measures of performance beyond
- "loss"/utility; we do this for impact of
- probabilistic feedback

Formalizing "user impacts": APC & FOC

APC (Arm Pull Count) for $i : \mathbb{E}\left[\sum_{t \in [T]} \mathbf{1}[i_t = i]\right]$ "How often is content shown to users?" **FOC** (Feedback Obs. Ct.) for $i : \mathbb{E}\left[\sum_{t \in [T]} \mathbf{1}[i_t = i] \cdot X_{i_t,t}\right]$ "How often do users give feedback?"

• Fix an instance \mathcal{I} . Consider instance $\tilde{\mathcal{I}}$, which is identical except for f_i , which is increased on \tilde{J} . The algorithm is (e.g.) **positive monotonic in APC** if $APC(\mathcal{I}) > APC(\mathcal{I})$.

Three black-box transformations for all achievable monotonicity guarantees

For any no-regret (stochastic) bandit algorithm with regret R_{ALG} :

Transfor- mation	High-level idea	Regret	APC	FOC
BBDivide	Divide T into equally-sized blocks	$R_{ALG}\left(\frac{Tf^*}{\ln T}\right) \cdot \frac{\ln T}{f^*}$	≈	+
BBPull	Pull the same arm until the first time feedback is observed	$R_{ALG}(T) \cdot \frac{1}{\min_i f_i}$	≈,−	≈,+
BBDivAdj	Pull each arm a prespecified number of times, increasing with f_i	$R_{ALG}\left(\frac{Tf^*}{3\ln T}\right)\cdot\frac{6\ln T}{f^*}$	≈,+	≈,+

Takeaway: wide range of monotonicity properties are achievable while preserving low regret!

3-Phase EXP3: adversarial losses + no-regret at the cost of monotonicity control

3-phase EXP3

Phase 1: Obtain highprobability estimate of f_i Phase 2: Obtain unbiased estimate of f_i Phase 3: Run standard EXP3, with hp est. to set learning rate and unbiased est. to create unbiased loss estimator

arXiV

 f^* is a tunable parameter between $(0, \min_i f_i]$. The \approx symbol indicates approx. balance.

+ Improved regret for BBPull+AAE/UCB: $O\left(\sqrt{T \ln(T) \sum_{i \in [K]} \frac{1}{f_i}}\right)$ + Strict monotonicity for BBPull+AAE and BBDA+AAE

Improvement over previous work on MAB + feedback graphs: Esposito et.al. 2022 achieve $O\left(\left|TK \min f_i\right|\right)$

Lacks clean monotonicity properties. K=2, T=1000. Left: $\ell_1 = 0.9$, $\ell_2 = 0.1$. Right: $\ell_1 = 0.1$, $\ell_2 = 0.9$