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Contributions

v’ We show that standard microfoundations serve as a poor basis
for studying agent behavior in binary classification.

v’ We explore alternative microfoundations for strategic
classification, and we identify noisy response as a promising
candidate model.

Classification in Strategic Environments
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Decision rule induces users to strategically adapt their features.

Microfoundations for Strategic Adaptation

Microfoundations = grounding theories of aggregate outcomes
in microeconomic assumptions about individual behavior [5]

Benefit from ML perspective: Microfoundations endow strategic
distribution shifts with structure.

Standard microfoundations (SM): “Agents maximize a utility
function on the basis of perfectly accurate information”

1.Cost ¢: X xX — R3Y for changing features.
2. Utility of changing features to x”is fg(x') — c(x, x")

3.Agents change features to: argmax,ex[fg(x') — c(x, x')]
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v retrain classifier weights to be
uced by the previous classifier.

Proposition: repeated retraining does not converge when any
randomly chosen fraction p € (0,1) of agents are non-strategic.
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Proposition: standard microfoundations lead to extreme solutions
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Selecting Alternative Microfoundations

|dea: identify properties to navigate the space of alternative models

Property 1: Aggregate smoothness
» Requires that the aggregate distribution is smooth
» Guarantees the robust existence of fixed points of repeated
retaining methods

Property 2: Expenditure constraint
» Constrains how much agents expend on gaming
» Helps ensure that agent responses are natural

Candidate Model: Noisy Response

Captures imperfect agents using intuition from smoothed analysis
(remaining agnostic to sources of imperfection).

l[dea: add random perturbations to perceptions
argmaxyex|fo4c(x') —c(x,x")]  (NR)

where t is distributed as a Gaussian across the population.
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