
Safety vs. Performance: How Multi-Objective 
Learning Reduces Barriers to Market Entry

Meena Jagadeesan (UC Berkeley)

Joint work with Michael I. Jordan and Jacob Steinhardt (UC Berkeley) 

https://arxiv.org/abs/2409.03734 

https://arxiv.org/abs/2409.03734


High-level overview of this work

This work: how hard is it for new LLM companies 
to enter the market?

We study the emerging market where companies 
train LLMs. 

?

Key feature: companies must balance multiple 
objectives to survive in the market



Outline for the talk

1. Background

2. Our model

3. Our results 
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Companies training these 
LLMs compete for users. 
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Barriers to market entry

Assumption: Model performance determines whether a company attracts users. 

 Reality: companies face pressure to consider objectives beyond performance.  

=> => 

Policymakers have raised concerns about a small # of companies dominating the market.

Incumbent keeps 
accumulating data

Incumbent keeps training models 
with better performance

New company can’t reach 
that performance level

e.g.,  UK Competition & Markets Authority, White House Executive Order, Brookings Center on Regulation & Markets 

Typical intuition: New LLM companies face large barriers to entry due to data accumulation 
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An emerging market of companies that train LLMs

? ? ???
Regulators / society 
scrutinize safety violations 
of deployed LLMs. 

Key property: Large high-resource companies 
face greater scrutiny than small companies. 

E.g., releasing dangerous 
information, generating offensive 
content, etc. 

Scrutiny from regulators:

Scrutiny from society:
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An emerging market of companies that train LLMs

? ? ???? ? ???

Companies strategically 
train LLMs to perform well 
and avoid scrutiny.

Regulators / society 
scrutinize safety violations 
of deployed LLMs. 

Users choose the 
unscrutinized LLM with 
best performance. 



Main question

In markets of companies training LLMs, how does regulatory 
and societal scrutiny affect barriers to market entry?



Overview of our contributions

Main finding: New companies can enter the market with much 
less data than incumbents. 

• We develop a multi-objective learning framework to study markets of companies 
training LLMs.

• We quantify and characterize the amount of data that a new company needs to the 
enter the market. 

• En route, we develop new technical tools for high-dim linear regression in multi-
objective environments



Competition between model-providers: 
e.g., Ben-Porat, Tennenholtz (‘17, ‘19), Feng, Gradwohl, Hartline, Johnsen, Nekipelov (‘19), Dong, Elzayn, 

Jabbari, Kearns, Schutzman (‘19), Aridor, Mansour, Slivkins, Wu (‘20), Iyer and Ke (‘22), Kwon, Ginart, Zou (‘22), 
Gradwohl, Tennenholtz (‘23),  J., Jordan, Haghtalab (‘23), J., Jordan, Steinhardt, Haghtalab (‘23)

Broader perspectives on algorithmic competition, policy, and dynamics: 
e.g., Immorlica, Kalai, Lucier, Moitra, Postlewaite, Tenneholtz (‘11), Hashimoto, Srivastava, Namkoong, Liang 

(‘18), Kleinberg, Raghavan (‘21) Dean, Curmei, Ratliff, Morgenstern, Fazel (‘22), Cen, Hopkins, Ilyas, Madry, 
Struckman, Caso (‘23), Fallah, Jordan (‘23), Laufer, Kleinberg, Heidari (‘24), Handina, Mazumdar (‘24)  

Scaling laws and high-dimensional linear regression: 
e.g., Hastie et al. (’19), Bordelon et al. (‘20), Kaplan et al., (‘20), Bahri et al. (‘21), Cui et al. (‘21), Hashimoto (‘21) 

Hernandez et al. (’21), Hoffmann et al. (‘22), Wei et al., (‘22), Bach (‘23), Jain et al. (‘24), Song et al. (‘24), Goyal 
et al. (‘24), Covert et al. (‘24), Shen et al. (‘24), Dohmatob et al. (‘24), Mallinar et al. (‘24)     

Our focus: barriers to market entry under multi-objective learning

Related Work
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Model: the company’s ML pipeline 

Faces scrutiny if loss 
on 𝛽2 exceeds 𝜏𝐼 . 

Incumbent 𝑰 New company 𝑬

Faces scrutiny if loss 
on 𝛽2 exceeds 𝜏𝐸 . 

Training dataset size:

Strategically chosen to minimize loss 
on 𝜷𝟏  subject to safety constraint 

Assumption: 𝛕𝐈 < 𝛕𝐄.

Each company chooses fraction to label with 𝜷𝟏 vs. 𝜷𝟐.

Each company chooses a regularization level.
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Results: Barriers to market entry

Definition: Market entry threshold 𝑵𝑬
∗   := min dataset size 𝑁𝐸  s.t. the new 

company achieves the incumbent’s performance along 𝛽1 without facing scrutiny. 



Results: Barriers to market entry

Our main finding: 𝑁𝐸
∗ ≪ 𝑁𝐼  (i.e., the market entry threshold is much smaller than 

the incumbent’s dataset size)

Definition: Market entry threshold 𝑵𝑬
∗   := min dataset size 𝑁𝐸  s.t. the new 

company achieves the incumbent’s performance along 𝛽1 without facing scrutiny. 
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Result 1: new company faces no safety constraint

Thm (Informal): The market entry 
threshold 𝑁𝐸

∗ satisfies

𝑁𝐸
∗ =

Θ 𝑵𝑰 if 𝑵𝑰 is small

Θ 𝑵𝑰

1

𝝂+1 ⋅ 𝐶 if 𝑵𝑰 is larger

Θ 𝐶′ if 𝑵𝑰 is large

.

Setup: Incumbent has finite data 𝑵𝑰; new company faces no safety constraint

𝜈 = a problem-specific data efficiency

Observation: New company enter with less than the incumbent as long as 𝑵𝑰 is large enough



Result 2: new company faces a safety constraint
Setup: Incumbent has infinite data; new company has nontrivial safety constraint 𝝉𝑬

Let 𝑫 := gap between the safety thresholds 𝜏𝐸  and 𝜏𝐼.



Result 2: new company faces a safety constraint

Thm (Informal): The market entry 
threshold 𝑁𝐸

∗ satisfies

𝑁𝐸
∗ =

Θ 𝑫−
1

𝝂 if 𝑫 is large

Θ 𝑫−
𝝂+1

𝝂 ⋅ 𝐶 if 𝑫 is smaller

Θ 𝑫
−

𝝂′+1

𝝂′ ⋅ 𝐶′ if 𝑫 is small

.

𝜈′ < 𝜈 are problem-specific data efficiencies

Smaller values of D

Setup: Incumbent has infinite data; new company has nontrivial safety constraint 𝝉𝑬

Let 𝑫 := gap between the safety thresholds 𝜏𝐸  and 𝜏𝐼.

Observation: New company can enter with finite data, but dataset size scales faster as 𝜏𝐸 → 𝜏𝐼.
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      => Can achieve the incumbent’s performance level with less training data 



Intuition for this phenomenon
Driver: the new company’s model can be less aligned with safety objectives than 
the incumbent’s model

The new company faces a weaker safety constraint 

     => Can label a larger fraction of training data with performance-opt outputs

      => Can achieve the incumbent’s performance level with less training data 

Technical tool: tight characterization of how data affects loss in multi-objective 
environments
• Data efficiency becomes worse as the dataset size increases 

Conclusion
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Technical tool: multi-objective data scaling laws

Thm (Informal): Let 𝐿 be the excess loss 
along 𝛽1 of the ridge regression estimator.

𝐿 =

Θ 𝑵−
1

𝝂 if 𝑵 is small

Θ 𝑵−
𝒗

𝝂+1 ⋅ 𝐶 if 𝑵 is larger

Θ 𝑵
−

𝝂′

𝜈′+1 ⋅ 𝐶 if 𝑵 is large

.

𝝂′ < 𝒗 are problem-
specific data efficiencies

N = dataset size

Setup: N training data points, fix fraction of data labelled with 𝛽2, regularize optimally

Scaling trend for excess loss: data efficiency decreases as N increases 
Model discussion
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Proof ideas for deriving scaling laws
Setup: N points, an 𝛼𝑖 fraction labelled with 𝛽𝑖, regularization level 𝜆 

Key idea: Derive a deterministic equivalent using Marčenko-Pastur law 

Challenge: test loss depends on randomness of N training data points 

Model discussion
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Key lemma: tight bounds on the loss

Lemma (Informal): The loss is approximately equal to:   

max 𝝀
𝜈

1+𝛾 , 𝑁−𝜈 + 𝛼2 ⋅ 𝑄 ⋅
min 𝑁, 𝝀

−
1

1+𝛾

𝑁
+ 𝛼2

2 ⋅ 𝑄 + 𝛼2 ⋅ 𝑄 max(𝜆
𝜈′

1+𝛾 , 𝑁−𝜈′
)

Finite data 
error

Overfitting 
error

Extra (Mixture 
finite data error)

Optimal infinite 
data loss

𝝂′ < 𝒗 are problem-specific efficiencies, 𝑄 = misalignment level𝛼2 = fraction of data labelled with 𝛽2,

Setup: N points, an 𝛼𝑖 fraction labelled with 𝛽𝑖, regularization level 𝜆 



Key lemma: tight bounds on the loss

Key idea: need to regularize to avoid overfitting, but this reduces data efficiency

Need tight bounds on test loss of ridge regression under data mixture

 

Lemma (Informal): The loss is approximately equal to:   

max 𝝀
𝜈

1+𝛾 , 𝑁−𝜈 + 𝛼2 ⋅ 𝑄 ⋅
min 𝑁, 𝝀

−
1

1+𝛾

𝑁
+ 𝛼2

2 ⋅ 𝑄 + 𝛼2 ⋅ 𝑄 max(𝜆
𝜈′

1+𝛾 , 𝑁−𝜈′
)

Finite data 
error

Overfitting 
error

Extra (Mixture 
finite data error)

Optimal infinite 
data loss

𝝂′ < 𝒗 are problem-specific efficiencies,𝛼2 = fraction of data labelled with 𝛽2,

Setup: N points, an 𝛼𝑖 fraction labelled with 𝛽𝑖, regularization level 𝜆 

𝑄 = misalignment level



• For LLMs, loss and data empirically follow a power law relationship (e.g., Kaplan et al., ‘20) 

• High-dim regression captures this power-law behavior 
• Exponent 𝜈 depends on covariance & linear predictor (e.g., Cui et al. ‘21, Wei et al., ‘22)

Model discussion: From high-dim regression to LLMs
For single-objective scaling laws, high-dim regression captures LLM behavior.

Future work: compare multi-objective scaling laws for high-dim regression with LLM behavior



Summary: market of companies that train LLMs
We studied barriers to market entry for companies training LLMs.

• Model: We modelled these markets within a multi-
objective learning framework.

• Intuition: regulatory and societal scrutiny places 
pressure on the incumbent to align with safety 

• Technical tool: multi-objective data scaling laws

Main finding: a new company can enter with less data than the incumbent.

Future direction: tradeoff between market concentration and safety compliance? 
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