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Motivating examples

Chatbot chooses outputs  : User selects content from slate

S

« Sequential: one player goes first
* Misaligned: players have different utilities

* Decentralized learning: players learn best action
while only observing their own utility.

ChatGPT
Output

Main questions: How quickly do these two agent
systems learn over time? What are the implications of
algorithm design on each player’s utility?

Model: decentralized Stackelberg

The static environment is a Stackelberg game.
* Action spaces: , B = follower
* Utility u, = follower

Best response:
* Follower: b*(a) = argmax,ep(u,(a, b))

Our setup:
Follower
ALG, = bandit algorithm

At each time step t:

Observes a; & chooses b,
using ALG,

Stochastic reward

u,(as, by) + noise

Cumulative reward:

ZZZl U; (Clt, bt)

Our goal: low regret for both and follower.

Impossibility of Stackelberg benchmarks

Original Stackelberg benchmarks: utility at Stackelberg equilibrium

and agng = U, (a*, b*(a*))

Theorem (Informal): For any pair of algorithms, at least one
player incurs linear regret w.r.t. their original Stackelberg
benchmark on one of the following two instances.

b, b, Two 1nstances:
a4 (0.6,6) (0.2,) «x=0 (SV=0.6,5)
a (0.5,0.6) (0.4,0.4) Versus

* = 20 (SV=0.5, 0.6)
Our error-tolerant benchmarks

Tolerant to the other player’s errors due to learning.

Definition (benchmarks):

fooz: = inf (maX min Uq (a, b) + E) Y = tolerance

€<y \ a€A beB.(a) ;
. . parameter
alol: = inf (mln max u,(a,b) + e)
eE<y \ a€A. beB
— -
worst-case e-regularizer
error level

Regret bounds w.r.t. new benchmarks

Negative: Both players running ExploreThenCommit leads to
linear regret for both.

Positive: algorithms where both players achieve sublinear regret:

Theorem (Informal): When the leader runs ExploreThenUCB and
the follower has low high-probability instantaneous regret, then both

~ (.2
players achieve O (TB) regret w.r.t. their error-tolerant benchmark.

Key algorithmic idea: the leader waits for the follower to sufficiently

converge (“Explore”) before starting to learn (“then UCB”).

Permits flexibility in the follower’s choice of algorithm

Faster learning? Not in general

Theorem (Informal): For any pair of algorithms at least

2
one player incurs Q(TE) regret w.r.t. their error tolerant
benchmark on one of the following two instances.

b, b,
a,; | (0.5+6,6) (0,%)

Two instances:
x=0 (i =05+6,al’ = §) versus
«= 26 (al®* =05  al’ =306)

Faster learning in relaxed settings
Setting 1: Continuity condition

Result (Informal): If players agree on which actions are similar in

reward (Lipschitz condition), then both players can achieve
0(\/7) regret w.r.t. their original Stackelberg benchmark.

Setting 2: Weaker benchmarks

Result (Informal): Consider self-tolerant benchmarks where
players are also tolerant to their own errors. Then, both

players can achieve 0(\/7) regret with respect to their self-

tolerant benchmark.

Summary and Discussion

We proposed a model for two-agent sequential, misalighed
environments with decentralized learning.

Our focus: how learning affects both player’s utilities.
We showed the impossibility of Stackelberg benchmarks.
We proposed error-tolerant benchmarks and constructed
algorithms achieving T?/3 regret.

We showed scenarios which permit faster learning.

Selected related works:

Bai, Jin, Wang, Xiong. Sample-efficient learning of stackelberg
equilibria in general-sum games . NeurlPS 2021.

Camara, Hartline, Johnsen. “Mechanisms for a no-regret agent:
Beyond the common prior”. FOCS 2020.

Haghtalab, Podimata, Yang. “Calibrated Stackelberg Games: Learning
optimal commitment against calibrated agents.” NeurlPS 2023.




