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Motivating examples

Main questions: How quickly do these two agent 
systems learn over time? What are the implications of 
algorithm design on each player’s utility?

Model: decentralized Stackelberg 

Faster learning? Not in general

Summary and Discussion

.

.
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We proposed a model for two-agent sequential, misaligned 
environments with decentralized learning. 
• Our focus: how learning affects both player’s utilities.
• We showed the impossibility of Stackelberg benchmarks. 
• We proposed error-tolerant benchmarks and constructed 

algorithms achieving 𝑇!/# regret.
• We showed scenarios which permit faster learning. 

(Authors in alphabetical order) 

Impossibility of Stackelberg benchmarks

Setting 1: Continuity condition  

Rec sys selects slate
User selects content from slate

User chooses prompts
Chatbot chooses outputs

• Sequential: one player goes first
• Misaligned: players have different utilities
• Decentralized learning: players learn best action 

while only observing their own utility. 
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Camara, Hartline, Johnsen. “Mechanisms for a no-regret agent: 
Beyond the common prior”. FOCS 2020. 
Haghtalab, Podimata, Yang. “Calibrated Stackelberg Games: Learning 
optimal commitment against calibrated agents.” NeurIPS 2023. 

Chooses 𝑎! using 𝑨𝑳𝑮𝟏 Observes 𝑎! & chooses 𝑏! 
using 𝑨𝑳𝑮𝟐

Stochastic reward 
𝑢$ 𝑎!, 𝑏! + noise

Stochastic reward 
𝑢% 𝑎!, 𝑏! + noise

At each time step 𝑡:

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

Cumulative reward: 
∑!&$' 𝑢$ 𝑎!, 𝑏!  

Cumulative reward: 
 ∑!&$' 𝑢% 𝑎!, 𝑏!  

Leader Follower 

The static environment is a Stackelberg game. 
• Action spaces: A = leader, B = follower
• Utility: 𝑢$ = leader, 𝑢% = follower

Best response:
• Follower: 𝑏∗ 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥)∈+(𝑢% 𝑎, 𝑏 ) 
• Leader: 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥,∈-(𝑢$(𝑎, 𝑏∗ 𝑎 ) 

Our setup: 

Setting 2: Weaker benchmarks 
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Definition (benchmarks): 

𝜖-regularizer𝜖-relaxed 
Stackelberg utility

Two		instances:	
∗	= 0  (SV = 0.6, 𝛿) 
versus 
∗	= 	2𝛿 (SV = 0.5, 0.6) 

Theorem (Informal): For any pair of algorithms, at least one 
player incurs linear regret w.r.t. their original Stackelberg 
benchmark on one of the following two instances.

Original Stackelberg benchmarks: utility at Stackelberg equilibrium
• 𝛼!

"#$%: = 𝑢! 𝑎∗, 𝑏∗ 𝑎∗  and 𝛼'
"#$% ≔ 𝑢' 𝑎∗, 𝑏∗ 𝑎∗

Theorem (Informal): When the leader runs ExploreThenUCB and 
the follower has low high-probability instantaneous regret, then both 

players achieve !𝑶 𝑻
𝟐
𝟑  regret w.r.t. their error-tolerant benchmark. 

𝑏! 𝑏" 
𝑎! 0.6, 𝛿 0.2,∗
𝑎"  0.5, 0.6 0.4, 0.4

Tolerant to the other player’s errors due to learning.

Negative: Both players running ExploreThenCommit leads to 
linear regret for both. 

Key algorithmic idea: the leader waits for the follower to sufficiently 
converge (“Explore”) before starting to learn (“then UCB”).

Positive: algorithms where both players achieve sublinear regret: 

Theorem (Informal): For any pair of algorithms at least 

one player incurs 𝛀 𝑻
𝟐
𝟑  regret w.r.t. their error tolerant 

benchmark on one of the following two instances.

Faster learning in relaxed settings

Permits flexibility in the follower’s choice of algorithm

Result (Informal): Consider self-tolerant benchmarks where 
players are also tolerant to their own errors. Then, both 
players can achieve 𝑂 𝑇  regret with respect to their self-
tolerant benchmark.   

Result (Informal): If players agree on which actions are similar in 
reward (Lipschitz condition), then both players can achieve 
𝑂 𝑇  regret w.r.t. their original Stackelberg benchmark.

𝑏! 𝑏" 
𝑎! 0.5 + 𝛿, 𝛿 0,∗
𝑎"  0.5, 3𝛿 0.5, 3𝛿
Two		instances:	
∗	= 0    (𝛼!(") 	=		0.5 + 𝛿,	𝛼'(") = 	𝛿) versus  
∗	= 	2𝛿 (𝛼!(")=	0.5, 	 𝛼'(") 	=	3𝛿)Our error-tolerant benchmarks

Regret bounds w.r.t. new benchmarks
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	 𝑢% 𝑎, 𝑏 + 𝜖

worst-case 
error level

𝜖-tolerant response sets: 

Our goal: low regret for both leader and follower. 

𝛾 = tolerance 
parameter


