
Impact of Decentralized Learning on Player Utilities in Stackelberg Games
Kate Donahue (Cornell), Nicole Immorlica (MSR), Meena Jagadeesan (UC Berkeley), Brendan Lucier (MSR), Alex Slivkins (MSR)

Motivating examples

Main questions: How quickly do these two agent
systems learn over time? What are the implications of
algorithm design on each player’s utility?

Model: decentralized Stackelberg

Faster learning? Not in general

Summary and Discussion

.

.

.

We proposed a model for two-agent sequential, misaligned
environments with decentralized learning.
• Our focus: how learning affects both player’s utilities.
• We showed the impossibility of Stackelberg benchmarks.
• We proposed error-tolerant benchmarks and constructed

algorithms achieving 𝑇!/# regret.
• We showed scenarios which permit faster learning.

(Authors in alphabetical order)

Impossibility of Stackelberg benchmarks

Setting 1: Continuity condition

Rec sys selects slate
User selects content from slate

User chooses prompts
Chatbot chooses outputs

• Sequential: one player goes first
• Misaligned: players have different utilities
• Decentralized learning: players learn best action

while only observing their own utility.

Selected related works:
Bai, Jin, Wang, Xiong. Sample-efficient learning of stackelberg
equilibria in general-sum games . NeurIPS 2021.
Camara, Hartline, Johnsen. “Mechanisms for a no-regret agent:
Beyond the common prior”. FOCS 2020.
Haghtalab, Podimata, Yang. “Calibrated Stackelberg Games: Learning
optimal commitment against calibrated agents.” NeurIPS 2023.

Chooses 𝑎! using 𝑨𝑳𝑮𝟏 Observes 𝑎! & chooses 𝑏!
using 𝑨𝑳𝑮𝟐

Stochastic reward
𝑢$ 𝑎!, 𝑏! + noise

Stochastic reward
𝑢% 𝑎!, 𝑏! + noise

At each time step 𝑡:

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

Cumulative reward:
∑!&$' 𝑢$ 𝑎!, 𝑏!

Cumulative reward:
 ∑!&$' 𝑢% 𝑎!, 𝑏!

Leader Follower

The static environment is a Stackelberg game.
• Action spaces: A = leader, B = follower
• Utility: 𝑢$ = leader, 𝑢% = follower

Best response:
• Follower: 𝑏∗ 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥)∈+(𝑢% 𝑎, 𝑏)
• Leader: 𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥,∈-(𝑢$(𝑎, 𝑏∗ 𝑎)

Our setup:

Setting 2: Weaker benchmarks

𝛼$!./: = inf
012

max
,∈-

𝐦𝐢𝐧
𝒃∈𝑩𝝐(𝒂)

𝑢$ 𝑎, 𝑏 + 𝜖

𝐵! 𝑎 ∶= 𝑏 ∈ 𝐵 ∣ 𝑢" 𝑎, 𝑏 ≥ max
#$∈&

𝑢" 𝑎, 𝑏′ − 𝜖	

𝐴!: = 𝑎	 ∈ 𝐴 ∣ 	max
#∈&!(()

	𝑢* 𝑎, 𝑏 ≥ max
("∈+

min
	 #"∈&!((")

𝑢* 𝑎$, 𝑏′ − 𝜖	

Definition (benchmarks):

𝜖-regularizer𝜖-relaxed
Stackelberg utility

Two		instances:	
∗	= 0 (SV = 0.6, 𝛿)
versus
∗	= 	2𝛿 (SV = 0.5, 0.6)

Theorem (Informal): For any pair of algorithms, at least one
player incurs linear regret w.r.t. their original Stackelberg
benchmark on one of the following two instances.

Original Stackelberg benchmarks: utility at Stackelberg equilibrium
• 𝛼!

"#$%: = 𝑢! 𝑎∗, 𝑏∗ 𝑎∗ and 𝛼'
"#$% ≔ 𝑢' 𝑎∗, 𝑏∗ 𝑎∗

Theorem (Informal): When the leader runs ExploreThenUCB and
the follower has low high-probability instantaneous regret, then both

players achieve !𝑶 𝑻
𝟐
𝟑 regret w.r.t. their error-tolerant benchmark.

𝑏! 𝑏"
𝑎! 0.6, 𝛿 0.2,∗
𝑎" 0.5, 0.6 0.4, 0.4

Tolerant to the other player’s errors due to learning.

Negative: Both players running ExploreThenCommit leads to
linear regret for both.

Key algorithmic idea: the leader waits for the follower to sufficiently
converge (“Explore”) before starting to learn (“then UCB”).

Positive: algorithms where both players achieve sublinear regret:

Theorem (Informal): For any pair of algorithms at least

one player incurs 𝛀 𝑻
𝟐
𝟑 regret w.r.t. their error tolerant

benchmark on one of the following two instances.

Faster learning in relaxed settings

Permits flexibility in the follower’s choice of algorithm

Result (Informal): Consider self-tolerant benchmarks where
players are also tolerant to their own errors. Then, both
players can achieve 𝑂 𝑇 regret with respect to their self-
tolerant benchmark.

Result (Informal): If players agree on which actions are similar in
reward (Lipschitz condition), then both players can achieve
𝑂 𝑇 regret w.r.t. their original Stackelberg benchmark.

𝑏! 𝑏"
𝑎! 0.5 + 𝛿, 𝛿 0,∗
𝑎" 0.5, 3𝛿 0.5, 3𝛿
Two		instances:	
∗	= 0 (𝛼!(") 	=		0.5 + 𝛿,	𝛼'(") = 	𝛿) versus
∗	= 	2𝛿 (𝛼!(")=	0.5, 	 𝛼'(") 	=	3𝛿)Our error-tolerant benchmarks

Regret bounds w.r.t. new benchmarks

𝛼%!./: = inf
012

𝐦𝐢𝐧
𝒂∈𝑨𝝐

	max
)∈+

	 𝑢% 𝑎, 𝑏 + 𝜖

worst-case
error level

𝜖-tolerant response sets:

Our goal: low regret for both leader and follower.

𝛾 = tolerance
parameter

