
Impact of Decentralized Learning on
Player Utilities in Stackelberg Games

Meena Jagadeesan (UC Berkeley)

Joint work with Kate Donahue (Cornell), Nicole Immorlica, Brendan Lucier, Alex Slivkins (MSR)

Published at ICML 2024
Presented at ESIF-AIML 2024

High-level overview of this work

How do the learning dynamics behave?

We study Stackelberg games with decentralized learning.

Captures systems of two sequential, misaligned agents that learn over time

Outline for the talk

1. Motivation and conceptual overview

2. Model of Stackelberg games with decentralized learning

3. Our analysis of learning dynamics

Motivation: User-AI Interactions

AI agent User

Motivation: User-AI Interactions

AI agent User

Motivation: User-AI Interactions

AI agent User

Motivation: User-AI Interactions

AI agent User

AI agent learns from repeatedly interacting with a user.

Motivation: User-AI Interactions

User learns from repeatedly interacting with the AI agent.

AI agent learns from repeatedly interacting with a user.

AI agent User

Motivation: User-AI Interactions

User-AI interactions are a form of multi-agent learning.

AI agent User

User learns from repeatedly interacting with the AI agent.

AI agent learns from repeatedly interacting with a user.

Our focus: Sequential, Misaligned, Decentralized Systems

User (leader) Chatbot (follower)

Our focus: Sequential, Misaligned, Decentralized Systems

Sequential: User leads (w/ prompt)

User (leader) Chatbot (follower)

Our focus: Sequential, Misaligned, Decentralized Systems

Sequential: User leads (w/ prompt); chatbot follows (w/ output).

User (leader) Chatbot (follower)

Our focus: Sequential, Misaligned, Decentralized Systems

Misaligned: User utility (individual preferences) vs. Chatbot utility (e.g., societal
preferences, implicit objective learned during training)

Sequential: User leads (w/ prompt); chatbot follows (w/ output).

User (leader) Chatbot (follower)

Our focus: Sequential, Misaligned, Decentralized Systems

Decentralized: User + chatbot learn separately over a chat session.

Misaligned: User utility (individual preferences) vs. Chatbot utility (e.g., societal
preferences, implicit objective learned during training)

Sequential: User leads (w/ prompt); chatbot follows (w/ output).

User (leader) Chatbot (follower)

Main question
We study Stackelberg games with decentralized learning, which are:

• Sequential: One agent leads, and the other agent follows.

• Misaligned: Agents have different utility functions.

• Decentralized: Agents learn separately from repeated interactions.

Main question

How do the learning dynamics behave?

We study Stackelberg games with decentralized learning, which are:

• Sequential: One agent leads, and the other agent follows.

• Misaligned: Agents have different utility functions.

• Decentralized: Agents learn separately from repeated interactions.

Main question

How do the learning dynamics behave?

• Implications for each agent’s cumulative utility over time?

We study Stackelberg games with decentralized learning, which are:

• Sequential: One agent leads, and the other agent follows.

• Misaligned: Agents have different utility functions.

• Decentralized: Agents learn separately from repeated interactions.

Main question

How do the learning dynamics behave?

• Implications for each agent’s cumulative utility over time?

• Implications for learning algorithm design?

We study Stackelberg games with decentralized learning, which are:

• Sequential: One agent leads, and the other agent follows.

• Misaligned: Agents have different utility functions.

• Decentralized: Agents learn separately from repeated interactions.

Overview of our contributions

Misalignment in agent utilities distorts the learning dynamics.

• When agents can be arbitrarily misaligned, we show the (full-information)
Stackelberg equilibrium utilities are unachievable.

• We develop relaxed benchmarks for each agent’s utility, and construct
algorithms that perform well for both agents w.r.t. these benchmarks.

• When agents are partially aligned, we show the Stackelberg equilibrium
utilities can be achieved.

Outline for the talk

1. Motivation and conceptual overview

2. Model of Stackelberg games with decentralized learning

3. Our analysis of learning dynamics

Overview of our model

❑ Sequential (one agent goes first)
❑ Misaligned (agent utilities are not equal)
❑ Decentralized (agents learn separately)

Overview of our model

✓ Sequential (one agent goes first)
✓ Misaligned (agent utilities are not equal)
X Decentralized (agents learn separately)

Stackelberg games: sequential, misaligned, static environments

Overview of our model

✓ Sequential (one agent goes first)
✓ Misaligned (agent utilities are not equal)
✓ Decentralized (agents learn separately)

Our model: Stackelberg games with decentralized learning

Stackelberg games: sequential, misaligned, static environments

Overview of our model

✓ Sequential (one agent goes first)
✓ Misaligned (agent utilities are not equal)
✓ Decentralized (agents learn separately)

Our model: Stackelberg games with decentralized learning
• Agents interact over T rounds.
• At every round, the leader goes first, and the follower goes second.
• Each agent observes their own stochastic rewards.

Stackelberg games: sequential, misaligned, static environments

Recap of static Stackelberg games

Follower best-responds to leader: 𝑏∗ 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈𝐵𝑢2 𝑎, 𝑏

Leader anticipates follower’s actions and best-responds:
𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑢1 𝑎, 𝑏∗(𝑎)

Action Utility

Leader 𝑎 ∈ 𝐴 𝑢1 𝑎, 𝑏

Follower 𝑏 ∈ 𝐵 𝑢2 𝑎, 𝑏

Recap of static Stackelberg games

Follower best-responds to leader: 𝑏∗ 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈𝐵𝑢2 𝑎, 𝑏

Leader anticipates follower’s actions and best-responds:
𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑢1 𝑎, 𝑏∗(𝑎)

Requires full knowledge of 𝑢2

Requires full knowledge of 𝑢1 and 𝑏∗

Action Utility

Leader 𝑎 ∈ 𝐴 𝑢1 𝑎, 𝑏

Follower 𝑏 ∈ 𝐵 𝑢2 𝑎, 𝑏

Stackelberg games with decentralized learning
Each agent learns how to select actions over T rounds.

Stackelberg games with decentralized learning

Leader Follower
A = arms, 𝑢1 = mean reward function B = arms, 𝑢2 = mean reward function

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

We cast agent learning within the stochastic multi-armed bandit framework:

Each agent learns how to select actions over T rounds.

Stackelberg games with decentralized learning

Leader Follower

At each time step 𝑡:

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

Each agent learns how to select actions over T rounds.

We cast agent learning within the stochastic multi-armed bandit framework:

A = arms, 𝑢1 = mean reward function B = arms, 𝑢2 = mean reward function

Stackelberg games with decentralized learning

Leader Follower

Chooses action 𝑎𝑡 using 𝑨𝑳𝑮𝟏

At each time step 𝑡:

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

Each agent learns how to select actions over T rounds.

We cast agent learning within the stochastic multi-armed bandit framework:

A = arms, 𝑢1 = mean reward function B = arms, 𝑢2 = mean reward function

Stackelberg games with decentralized learning

Leader Follower

Chooses action 𝑎𝑡 using 𝑨𝑳𝑮𝟏 Observes 𝑎𝑡 & chooses 𝑏𝑡 using 𝑨𝑳𝑮𝟐

At each time step 𝑡:

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

Each agent learns how to select actions over T rounds.

We cast agent learning within the stochastic multi-armed bandit framework:

A = arms, 𝑢1 = mean reward function B = arms, 𝑢2 = mean reward function

Stackelberg games with decentralized learning

Leader Follower

Chooses action 𝑎𝑡 using 𝑨𝑳𝑮𝟏 Observes 𝑎𝑡 & chooses 𝑏𝑡 using 𝑨𝑳𝑮𝟐

Observe stochastic reward 𝑢1 𝑎𝑡 , 𝑏𝑡 + 𝜂1,𝑡 Observe stochastic reward 𝑢2 𝑎𝑡 , 𝑏𝑡 + 𝜂2,𝑡

At each time step 𝑡:

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

Each agent learns how to select actions over T rounds.

We cast agent learning within the stochastic multi-armed bandit framework:

A = arms, 𝑢1 = mean reward function B = arms, 𝑢2 = mean reward function

Stackelberg games with decentralized learning

Leader Follower

Chooses action 𝑎𝑡 using 𝑨𝑳𝑮𝟏 Observes 𝑎𝑡 & chooses 𝑏𝑡 using 𝑨𝑳𝑮𝟐

At each time step 𝑡:

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

Each agent learns how to select actions over T rounds.

We cast agent learning within the stochastic multi-armed bandit framework:

Cumulative utility: σ𝑡=1
𝑇 𝑢1 𝑎𝑡, 𝑏𝑡 Cumulative utility: σ𝑡=1

𝑇 𝑢2 𝑎𝑡, 𝑏𝑡

A = arms, 𝑢1 = mean reward function B = arms, 𝑢2 = mean reward function

Observe stochastic reward 𝑢1 𝑎𝑡 , 𝑏𝑡 + 𝜂1,𝑡 Observe stochastic reward 𝑢2 𝑎𝑡 , 𝑏𝑡 + 𝜂2,𝑡

Related work
Learning in Stackelberg games with unknown utilities for both agents:

e.g., Camara, Hartline, Johnsen (2020), Bai, Jin, Wang, Xiong (2021), Gan, Han, Wu, Xu (2023), Haghtalab, Podimata, Yang (2023),
Collina, Roth, Shao (2023), etc.

Broader literature on learning in Stackelberg games:

e.g., Letchford, Conitzer, Munagala (2009), Balcan, Blum, Haghtalab, Procaccia (2015), Braverman, Mao, Schneider, Weinberg
(2018), Fiez, Chasnov, Ratliff (2019), Deng, Schneider, Sivan (2019), Zrnic, Mazumdar, Sastry, Jordan (2021), Kao, Wei, Subramanian
(2022), Goktas, Zhao, Greenwald (2022), Haghtalab, Lykouris, Nietert, Wei (2022), Zhao, Zhu, Jiao, Jordan (2023), Brown, Schneider,

Vodrahalli (2023), Guruganesh, Kolumbus, Schneider, Talgam-Cohen, Vasileios-Vlatakis-Gkaragkounis (2024), etc.

Interacting learners:

e.g. Chayes, Immorlica, Jain, Etesami, Mahdian (2007), Chan, Hadfield-Menell, Srinivasa, Dragan (2010), Daskalakis, Deckelbaum,
Kim (2011), Borgs, Agarwal, Luo, Neyshabur, Schapire (2017), Aridor, Mansour, Slivkins, Wu (2020), Zhuang, Hadfield-Menell (2020),

J., Jordan, Haghtalab (2023), etc.

Our model: stochastic rewards, utility of both agents, arbitrary misalignment, decentralized learning

Outline for the talk

1. Motivation and conceptual overview

2. Model of Stackelberg games with decentralized learning

3. Our analysis of learning dynamics

Measuring each agent’s regret

We study each agent i’s expected pseudo-regret: E σ𝑡=1
𝑇 𝑢𝑖 𝑎𝑡, 𝑏𝑡 − 𝛼𝑖 ⋅ 𝑇

Agent i’s benchmarkAgent i’s cumulative utility

Measuring each agent’s regret

What benchmarks are appropriate for this environment?

We study each agent i’s expected pseudo-regret: E σ𝑡=1
𝑇 𝑢𝑖 𝑎𝑡, 𝑏𝑡 − 𝛼𝑖 ⋅ 𝑇

Agent i’s benchmarkAgent i’s cumulative utility

Stackelberg benchmark is unachievable
Naïve benchmark: 𝛼𝑖

𝑜𝑟𝑖𝑔
≔ 𝑢𝑖(𝑎

∗, 𝑏∗ 𝑎∗) (the Stackelberg equilibrium utility)

Stackelberg benchmark is unachievable
Naïve benchmark: 𝛼𝑖

𝑜𝑟𝑖𝑔
≔ 𝑢𝑖(𝑎

∗, 𝑏∗ 𝑎∗) (the Stackelberg equilibrium utility)

Theorem: For any 𝐴𝐿𝐺1 and 𝐴𝐿𝐺2, some agent i incurs linear regret w.r.t. 𝛼𝑖
𝑜𝑟𝑖𝑔.

Stackelberg benchmark is unachievable

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

Pair = (𝑢1 𝑎, 𝑏 , 𝑢2(𝑎, 𝑏))

Naïve benchmark: 𝛼𝑖
𝑜𝑟𝑖𝑔

≔ 𝑢𝑖(𝑎
∗, 𝑏∗ 𝑎∗) (the Stackelberg equilibrium utility)

Theorem: For any 𝐴𝐿𝐺1 and 𝐴𝐿𝐺2, some agent i incurs linear regret w.r.t. 𝛼𝑖
𝑜𝑟𝑖𝑔.

Stackelberg benchmark is unachievable

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

Pair = (𝑢1 𝑎, 𝑏 , 𝑢2(𝑎, 𝑏)), Gold = follower’s best-response

Naïve benchmark: 𝛼𝑖
𝑜𝑟𝑖𝑔

≔ 𝑢𝑖(𝑎
∗, 𝑏∗ 𝑎∗) (the Stackelberg equilibrium utility)

Theorem: For any 𝐴𝐿𝐺1 and 𝐴𝐿𝐺2, some agent i incurs linear regret w.r.t. 𝛼𝑖
𝑜𝑟𝑖𝑔.

Stackelberg benchmark is unachievable

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

Pair = (𝑢1 𝑎, 𝑏 , 𝑢2(𝑎, 𝑏)), Gold = follower’s best-response Purple = leader’s best-response

Naïve benchmark: 𝛼𝑖
𝑜𝑟𝑖𝑔

≔ 𝑢𝑖(𝑎
∗, 𝑏∗ 𝑎∗) (the Stackelberg equilibrium utility)

Theorem: For any 𝐴𝐿𝐺1 and 𝐴𝐿𝐺2, some agent i incurs linear regret w.r.t. 𝛼𝑖
𝑜𝑟𝑖𝑔.

Stackelberg benchmark is unachievable

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

Pair = (𝑢1 𝑎, 𝑏 , 𝑢2(𝑎, 𝑏)),

(𝜶𝟏
𝒐𝒓𝒊𝒈, 𝜶𝟐

𝒐𝒓𝒊𝒈
) = 𝟎. 𝟔, 𝜹 (𝜶𝟏

𝒐𝒓𝒊𝒈, 𝜶𝟐
𝒐𝒓𝒊𝒈

) = 𝟎. 𝟓, 𝟎. 𝟔

Gold = follower’s best-response Purple = leader’s best-response

Naïve benchmark: 𝛼𝑖
𝑜𝑟𝑖𝑔

≔ 𝑢𝑖(𝑎
∗, 𝑏∗ 𝑎∗) (the Stackelberg equilibrium utility)

Theorem: For any 𝐴𝐿𝐺1 and 𝐴𝐿𝐺2, some agent i incurs linear regret w.r.t. 𝛼𝑖
𝑜𝑟𝑖𝑔.

Stackelberg benchmark is unachievable

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

Pair = (𝑢1 𝑎, 𝑏 , 𝑢2(𝑎, 𝑏)),

(𝜶𝟏
𝒐𝒓𝒊𝒈, 𝜶𝟐

𝒐𝒓𝒊𝒈
) = 𝟎. 𝟔, 𝜹 (𝜶𝟏

𝒐𝒓𝒊𝒈, 𝜶𝟐
𝒐𝒓𝒊𝒈

) = 𝟎. 𝟓, 𝟎. 𝟔

Due to misalignment, small errors by one agent can distort the other agent’s utility.

Gold = follower’s best-response Purple = leader’s best-response

Naïve benchmark: 𝛼𝑖
𝑜𝑟𝑖𝑔

≔ 𝑢𝑖(𝑎
∗, 𝑏∗ 𝑎∗) (the Stackelberg equilibrium utility)

Theorem: For any 𝐴𝐿𝐺1 and 𝐴𝐿𝐺2, some agent i incurs linear regret w.r.t. 𝛼𝑖
𝑜𝑟𝑖𝑔.

Our error-tolerant benchmarks

𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

𝐦𝐢𝐧
𝒃∈𝑩𝝐(𝒂)

𝑢1 𝑎, 𝑏 + 𝜖 and 𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
𝐦𝐢𝐧
𝒂∈𝑨𝝐

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖

Definition (Error-tolerant benchmarks):

Account for agent errors via 𝝐-approximate best-response sets:

𝐵𝜖 𝑎 ∶= 𝑏 ∈ 𝐵 ∣ 𝑢2 𝑎, 𝑏 ≥ max
𝑏′∈𝐵

𝑢2 𝑎, 𝑏′ − 𝜖

𝐴𝜖: = 𝑎 ∈ 𝐴 ∣ max
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 ≥ max
𝑎′∈𝐴

min
𝑏′∈𝐵𝜖(𝑎′)

𝑢1 𝑎′, 𝑏′ − 𝜖

Our error-tolerant benchmarks

𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

𝐦𝐢𝐧
𝒃∈𝑩𝝐(𝒂)

𝑢1 𝑎, 𝑏 + 𝜖 and 𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
𝐦𝐢𝐧
𝒂∈𝑨𝝐

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖

𝜖-relaxed Stackelberg utility

Definition (Error-tolerant benchmarks):

Account for agent errors via 𝝐-approximate best-response sets:

𝐵𝜖 𝑎 ∶= 𝑏 ∈ 𝐵 ∣ 𝑢2 𝑎, 𝑏 ≥ max
𝑏′∈𝐵

𝑢2 𝑎, 𝑏′ − 𝜖

𝐴𝜖: = 𝑎 ∈ 𝐴 ∣ max
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 ≥ max
𝑎′∈𝐴

min
𝑏′∈𝐵𝜖(𝑎′)

𝑢1 𝑎′, 𝑏′ − 𝜖

Our error-tolerant benchmarks

𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

𝐦𝐢𝐧
𝒃∈𝑩𝝐(𝒂)

𝑢1 𝑎, 𝑏 + 𝜖 and 𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
𝐦𝐢𝐧
𝒂∈𝑨𝝐

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖

𝜖-regularizer𝜖-relaxed Stackelberg utility

Definition (Error-tolerant benchmarks):

Account for agent errors via 𝝐-approximate best-response sets:

𝐵𝜖 𝑎 ∶= 𝑏 ∈ 𝐵 ∣ 𝑢2 𝑎, 𝑏 ≥ max
𝑏′∈𝐵

𝑢2 𝑎, 𝑏′ − 𝜖

𝐴𝜖: = 𝑎 ∈ 𝐴 ∣ max
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 ≥ max
𝑎′∈𝐴

min
𝑏′∈𝐵𝜖(𝑎′)

𝑢1 𝑎′, 𝑏′ − 𝜖

Our error-tolerant benchmarks

𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

𝐦𝐢𝐧
𝒃∈𝑩𝝐(𝒂)

𝑢1 𝑎, 𝑏 + 𝜖 and 𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
𝐦𝐢𝐧
𝒂∈𝑨𝝐

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖

𝜖-regularizer𝜖-relaxed Stackelberg utility

Definition (Error-tolerant benchmarks):

Account for agent errors via 𝝐-approximate best-response sets:

worst-case
error level

𝐵𝜖 𝑎 ∶= 𝑏 ∈ 𝐵 ∣ 𝑢2 𝑎, 𝑏 ≥ max
𝑏′∈𝐵

𝑢2 𝑎, 𝑏′ − 𝜖

𝐴𝜖: = 𝑎 ∈ 𝐴 ∣ max
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 ≥ max
𝑎′∈𝐴

min
𝑏′∈𝐵𝜖(𝑎′)

𝑢1 𝑎′, 𝑏′ − 𝜖

Example of error-tolerant benchmarks
𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

min
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 + 𝜖 and 𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
min
𝑎∈𝐴𝜖

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖

Example of error-tolerant benchmarks

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

We take 𝛿 < 𝛾 = 0.05 in this example.

𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

min
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 + 𝜖 and 𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
min
𝑎∈𝐴𝜖

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖

Example of error-tolerant benchmarks

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓 + 𝜹, 𝜹)

We take 𝛿 < 𝛾 = 0.05 in this example.

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓, 𝟑𝜹)

Green is 𝐵𝛿 𝑎 Pink is 𝐴𝛿

𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

min
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 + 𝜖 and 𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
min
𝑎∈𝐴𝜖

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖

Our algorithmic results

• Standard algorithms can incur linear regret w.r.t the error-tolerant benchmarks.

• We construct algorithms achieving ෨𝑂 𝑇
2

3 regret w.r.t error-tolerant benchmarks.

• Any algorithms incur Ω 𝑇
2

3 regret for some agent w.r.t error-tolerant benchmarks.

• When agent utilities are partially aligned, we construct algorithms which achieve

෨𝑂 𝑇
1

2 regret w.r.t the original Stackelberg benchmarks.

Conclusion

Goal: design algorithms that achieve sublinear regret for both agents

Standard algorithms can incur linear regret
Proposition (Informal): Suppose both agents run ExploreThenCommit. Then
both agents can incur linear regret w.r.t. the error-tolerant benchmarks.

Standard algorithms can incur linear regret
Proposition (Informal): Suppose both agents run ExploreThenCommit. Then
both agents can incur linear regret w.r.t. the error-tolerant benchmarks.

𝑏1 𝑏2

𝑎1 0.6, 0.4 0.2, 0

𝑎2 0.5, 0.3 0.4, 0.2

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟔, 𝟎. 𝟒)

Standard algorithms can incur linear regret
Proposition (Informal): Suppose both agents run ExploreThenCommit. Then
both agents can incur linear regret w.r.t. the error-tolerant benchmarks.

𝑏1 𝑏2

𝑎1 0.6, 0.4 0.2, 0

𝑎2 0.5, 0.3 0.4, 0.2

Leader’s estimated rewards during exploration:

• 0.5 𝑢1 𝑎1, 𝑏1 + 𝑢1 𝑎1, 𝑏2 = 𝟎. 𝟒 on 𝑎1

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟔, 𝟎. 𝟒)

Standard algorithms can incur linear regret
Proposition (Informal): Suppose both agents run ExploreThenCommit. Then
both agents can incur linear regret w.r.t. the error-tolerant benchmarks.

𝑏1 𝑏2

𝑎1 0.6, 0.4 0.2, 0

𝑎2 0.5, 0.3 0.4, 0.2

Leader’s estimated rewards during exploration:

• 0.5 𝑢1 𝑎1, 𝑏1 + 𝑢1 𝑎1, 𝑏2 = 𝟎. 𝟒 on 𝑎1

• 0.5 𝑢1 𝑎2, 𝑏1 + 𝑢1 𝑎2, 𝑏2 = 𝟎. 𝟒𝟓 on 𝑎2

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟔, 𝟎. 𝟒)

Standard algorithms can incur linear regret
Proposition (Informal): Suppose both agents run ExploreThenCommit. Then
both agents can incur linear regret w.r.t. the error-tolerant benchmarks.

𝑏1 𝑏2

𝑎1 0.6, 0.4 0.2, 0

𝑎2 0.5, 0.3 0.4, 0.2

Leader’s estimated rewards during exploration:

• 0.5 𝑢1 𝑎1, 𝑏1 + 𝑢1 𝑎1, 𝑏2 = 𝟎. 𝟒 on 𝑎1

• 0.5 𝑢1 𝑎2, 𝑏1 + 𝑢1 𝑎2, 𝑏2 = 𝟎. 𝟒𝟓 on 𝑎2

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟔, 𝟎. 𝟒) Leader would commit to 𝑎2
 Both players incur linear regret

Standard algorithms can incur linear regret
Proposition (Informal): Suppose both agents run ExploreThenCommit. Then
both agents can incur linear regret w.r.t. the error-tolerant benchmarks.

Leader would commit to 𝑎2
 Both players incur linear regret

Key issue: the follower’s exploration phase distorts the leader’s learning

Leader’s estimated rewards during exploration:

• 0.5 𝑢1 𝑎1, 𝑏1 + 𝑢1 𝑎1, 𝑏2 = 𝟎. 𝟒 on 𝑎1

• 0.5 𝑢1 𝑎2, 𝑏1 + 𝑢1 𝑎2, 𝑏2 = 𝟎. 𝟒𝟓 on 𝑎2

𝑏1 𝑏2

𝑎1 0.6, 0.4 0.2, 0

𝑎2 0.5, 0.3 0.4, 0.2

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟔, 𝟎. 𝟒)

Warm-up: Modified ETC yields sublinear regret
Key algorithmic idea: leader waits for the follower to finish exploring before learning

Warm-up: Modified ETC yields sublinear regret

Proposition (Informal): Suppose that:
• The follower runs ExploreThenCommit.
• The leader runs a modified ExploreThenCommit where they discard observations

from the follower’s exploration phase when computing the empirical means.

=> Both agents achieve ෩𝑶 𝑻
𝟐

𝟑 𝐴 𝐵 log 𝑇
1

3 regret w.r.t. error-tolerant benchmarks.

Key algorithmic idea: leader waits for the follower to finish exploring before learning

Warm-up: Modified ETC yields sublinear regret
Key algorithmic idea: leader waits for the follower to finish exploring before learning

Regret is sublinear for both players!

Proposition (Informal): Suppose that:
• The follower runs ExploreThenCommit.
• The leader runs a modified ExploreThenCommit where they discard observations

from the follower’s exploration phase when computing the empirical means.

=> Both agents achieve ෩𝑶 𝑻
𝟐

𝟑 𝐴 𝐵 log 𝑇
1

3 regret w.r.t. error-tolerant benchmarks.

Main Result: Flexibility in Follower’s Algorithm
ExploreThenUCB enables flexibility for the follower while maintaining the same regret.

Main Result: Flexibility in Follower’s Algorithm

Theorem (Informal): Suppose that:
• The leader runs 𝐄𝐱𝐩𝐥𝐨𝐫𝐞𝐓𝐡𝐞𝐧𝐔𝐂𝐁 where they discard observations from an

initial phase and then run a variant of 𝐔𝐂𝐁.
• The follower runs any algorithm with sufficiently low instantaneous regret.

=> Both agents achieve ෩𝑶 𝑻
𝟐

𝟑 𝐴 𝐵 log 𝑇
1

3 regret w.r.t. error-tolerant benchmarks.

ExploreThenUCB enables flexibility for the follower while maintaining the same regret.

Main Result: Flexibility in Follower’s Algorithm

Theorem (Informal): Suppose that:
• The leader runs 𝐄𝐱𝐩𝐥𝐨𝐫𝐞𝐓𝐡𝐞𝐧𝐔𝐂𝐁 where they discard observations from an

initial phase and then run a variant of 𝐔𝐂𝐁.
• The follower runs any algorithm with sufficiently low instantaneous regret.

=> Both agents achieve ෩𝑶 𝑻
𝟐

𝟑 𝐴 𝐵 log 𝑇
1

3 regret w.r.t. error-tolerant benchmarks.

ExploreThenUCB enables flexibility for the follower while maintaining the same regret.

Leader waits for follower to sufficiently converge
and then runs UCB

Main Result: Flexibility in Follower’s Algorithm

Theorem (Informal): Suppose that:
• The leader runs 𝐄𝐱𝐩𝐥𝐨𝐫𝐞𝐓𝐡𝐞𝐧𝐔𝐂𝐁 where they discard observations from an

initial phase and then run a variant of 𝐔𝐂𝐁.
• The follower runs any algorithm with sufficiently low instantaneous regret.

=> Both agents achieve ෩𝑶 𝑻
𝟐

𝟑 𝐴 𝐵 log 𝑇
1

3 regret w.r.t. error-tolerant benchmarks.

ExploreThenUCB enables flexibility for the follower while maintaining the same regret.

Follower must gracefully learn (satisfied
by AAE, ExploreThenCommit, etc)

Leader waits for follower to sufficiently converge
and then runs UCB

Main Result: Flexibility in Follower’s Algorithm

Theorem (Informal): Suppose that:
• The leader runs 𝐄𝐱𝐩𝐥𝐨𝐫𝐞𝐓𝐡𝐞𝐧𝐔𝐂𝐁 where they discard observations from an

initial phase and then run a variant of 𝐔𝐂𝐁.
• The follower runs any algorithm with sufficiently low instantaneous regret.

=> Both agents achieve ෩𝑶 𝑻
𝟐

𝟑 𝐴 𝐵 log 𝑇
1

3 regret w.r.t. error-tolerant benchmarks.

ExploreThenUCB enables flexibility for the follower while maintaining the same regret.

Follower must gracefully learn (satisfied
by AAE, ExploreThenCommit, etc)

Leader waits for follower to sufficiently converge
and then runs UCB

Regret scaling with 𝑻𝟐/𝟑 rate is unavoidable
Theorem (Informal): For any A𝐿𝐺1 and A𝐿𝐺2, some agent incurs Ω 𝑻

𝟐

𝟑 𝐵
1

3 regret.

Conclusion

Regret scaling with 𝑻𝟐/𝟑 rate is unavoidable

𝑏1 . 𝑏2

𝑎1 0.5 + 𝛿, 𝛿 0, 𝟎

𝑎2 0.5, 3𝛿 0.5, 3𝛿

𝑏1 . 𝑏2

𝑎1 0.5 + 𝛿, 𝛿 0, 𝟐 𝜹

𝑎2 0.5, 3 𝛿 0.5, 3𝛿

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓 + 𝜹, 𝜹) (𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓, 𝟑𝜹)

Theorem (Informal): For any A𝐿𝐺1 and A𝐿𝐺2, some agent incurs Ω 𝑻
𝟐

𝟑 𝐵
1

3 regret.

Regret scaling with 𝑻𝟐/𝟑 rate is unavoidable

𝑏1 . 𝑏2

𝑎1 0.5 + 𝛿, 𝛿 0, 𝟎

𝑎2 0.5, 3𝛿 0.5, 3𝛿

𝑏1 . 𝑏2

𝑎1 0.5 + 𝛿, 𝛿 0, 𝟐 𝜹

𝑎2 0.5, 3 𝛿 0.5, 3𝛿

To distinguish instances, need to explore a very suboptimal arm 𝒂𝟏, 𝒃𝟐 for the leader

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓 + 𝜹, 𝜹) (𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓, 𝟑𝜹)

Theorem (Informal): For any A𝐿𝐺1 and A𝐿𝐺2, some agent incurs Ω 𝑻
𝟐

𝟑 𝐵
1

3 regret.

What if agents are partially aligned?
Suppose that the two agents agree over which outcomes are different.

𝐿 = sup
𝑎,𝑎′,𝑏,𝑏′

𝑢1 𝑎, 𝑏 − 𝑢1(𝑎
′, 𝑏′)

𝑢2 𝑎, 𝑏 − 𝑢2(𝑎
′, 𝑏′)

,
𝑢2 𝑎, 𝑏 − 𝑢2(𝑎

′, 𝑏′)

𝑢1 𝑎, 𝑏 − 𝑢1(𝑎
′, 𝑏′)

We show that L is bounded => the original Stackelberg benchmarks are achievable.

Takeaway: Partial alignment makes learning easier and faster.

Theorem (Informal): There exist algorithms such that both players achieve

෩𝑶 𝑳𝟐 𝑻 𝑨 𝑩 regret w.r.t. the original Stackelberg benchmarks.

Conclusion
We study Stackelberg games with decentralized learning.

Main finding: misalignment in agent utilities distorts learning dynamics

• We showed that the Stackelberg equilibrium utilities are unachievable.
• We designed error-tolerant benchmarks to better capture learning dynamics.

• We constructed algorithms which achieve optimal ෩Θ 𝑇
2

3 regret.

• We showed that partial alignment makes learning easier and faster.

Future directions: allow for greater flexibility in leader algorithm, study application-specific
learning algorithms, characterize equilibria in the meta-game between agents, etc.

	Slide 1: Impact of Decentralized Learning on Player Utilities in Stackelberg Games
	Slide 2: High-level overview of this work
	Slide 3: Outline for the talk
	Slide 4: Motivation: User-AI Interactions
	Slide 5: Motivation: User-AI Interactions
	Slide 6: Motivation: User-AI Interactions
	Slide 7: Motivation: User-AI Interactions
	Slide 8: Motivation: User-AI Interactions
	Slide 9: Motivation: User-AI Interactions
	Slide 10: Our focus: Sequential, Misaligned, Decentralized Systems
	Slide 11: Our focus: Sequential, Misaligned, Decentralized Systems
	Slide 12: Our focus: Sequential, Misaligned, Decentralized Systems
	Slide 13: Our focus: Sequential, Misaligned, Decentralized Systems
	Slide 14: Our focus: Sequential, Misaligned, Decentralized Systems
	Slide 15: Main question
	Slide 16: Main question
	Slide 17: Main question
	Slide 18: Main question
	Slide 19: Overview of our contributions
	Slide 20: Outline for the talk
	Slide 21: Overview of our model
	Slide 22: Overview of our model
	Slide 23: Overview of our model
	Slide 24: Overview of our model
	Slide 25: Recap of static Stackelberg games
	Slide 26: Recap of static Stackelberg games
	Slide 27: Stackelberg games with decentralized learning
	Slide 28: Stackelberg games with decentralized learning
	Slide 29: Stackelberg games with decentralized learning
	Slide 30: Stackelberg games with decentralized learning
	Slide 31: Stackelberg games with decentralized learning
	Slide 32: Stackelberg games with decentralized learning
	Slide 33: Stackelberg games with decentralized learning
	Slide 34: Related work
	Slide 35: Outline for the talk
	Slide 36: Measuring each agent’s regret
	Slide 37: Measuring each agent’s regret
	Slide 38: Stackelberg benchmark is unachievable
	Slide 39: Stackelberg benchmark is unachievable
	Slide 40: Stackelberg benchmark is unachievable
	Slide 41: Stackelberg benchmark is unachievable
	Slide 42: Stackelberg benchmark is unachievable
	Slide 43: Stackelberg benchmark is unachievable
	Slide 44: Stackelberg benchmark is unachievable
	Slide 45: Our error-tolerant benchmarks
	Slide 46: Our error-tolerant benchmarks
	Slide 47: Our error-tolerant benchmarks
	Slide 48: Our error-tolerant benchmarks
	Slide 49: Example of error-tolerant benchmarks
	Slide 50: Example of error-tolerant benchmarks
	Slide 51: Example of error-tolerant benchmarks
	Slide 52: Our algorithmic results
	Slide 53: Standard algorithms can incur linear regret
	Slide 54: Standard algorithms can incur linear regret
	Slide 55: Standard algorithms can incur linear regret
	Slide 56: Standard algorithms can incur linear regret
	Slide 57: Standard algorithms can incur linear regret
	Slide 58: Standard algorithms can incur linear regret
	Slide 59: Warm-up: Modified ETC yields sublinear regret
	Slide 60: Warm-up: Modified ETC yields sublinear regret
	Slide 61: Warm-up: Modified ETC yields sublinear regret
	Slide 62: Main Result: Flexibility in Follower’s Algorithm
	Slide 63: Main Result: Flexibility in Follower’s Algorithm
	Slide 64: Main Result: Flexibility in Follower’s Algorithm
	Slide 65: Main Result: Flexibility in Follower’s Algorithm
	Slide 66: Main Result: Flexibility in Follower’s Algorithm
	Slide 67: Regret scaling with T 2 3 rate is unavoidable
	Slide 68: Regret scaling with T 2 3 rate is unavoidable
	Slide 69: Regret scaling with T 2 3 rate is unavoidable
	Slide 70: What if agents are partially aligned?
	Slide 71: Conclusion

