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High-level overview of this work

How do the learning dynamics behave? 

We study Stackelberg games with decentralized learning.

Captures systems of two sequential, misaligned agents that learn over time
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1. Motivation and conceptual overview

2. Model of Stackelberg games with decentralized learning

3. Our analysis of learning dynamics
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Motivation: User-AI Interactions

User-AI interactions are a form of multi-agent learning. 

AI agent User

User learns from repeatedly interacting with the AI agent. 

AI agent learns from repeatedly interacting with a user.
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Our focus: Sequential, Misaligned, Decentralized Systems 

Misaligned: User utility (individual preferences) vs. Chatbot utility (e.g., societal 
preferences, implicit objective learned during training)
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Our focus: Sequential, Misaligned, Decentralized Systems 

Decentralized: User + chatbot learn separately over a chat session. 

Misaligned: User utility (individual preferences) vs. Chatbot utility (e.g., societal 
preferences, implicit objective learned during training)

Sequential: User leads (w/ prompt); chatbot follows (w/ output).

User (leader) Chatbot (follower)



Main question
We study Stackelberg games with decentralized learning, which are: 

• Sequential: One agent leads, and the other agent follows.

• Misaligned: Agents have different utility functions.

• Decentralized: Agents learn separately from repeated interactions.
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Main question

How do the learning dynamics behave?

• Implications for each agent’s cumulative utility over time? 

• Implications for learning algorithm design? 

We study Stackelberg games with decentralized learning, which are:  

• Sequential: One agent leads, and the other agent follows.

• Misaligned: Agents have different utility functions.

• Decentralized: Agents learn separately from repeated interactions.



Overview of our contributions

Misalignment in agent utilities distorts the learning dynamics. 

• When agents can be arbitrarily misaligned, we show the (full-information) 
Stackelberg equilibrium utilities are unachievable. 

• We develop relaxed benchmarks for each agent’s utility, and construct 
algorithms that perform well for both agents w.r.t. these benchmarks. 

• When agents are partially aligned, we show the Stackelberg equilibrium 
utilities can be achieved. 
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Overview of our model

✓ Sequential (one agent goes first) 
✓ Misaligned (agent utilities are not equal) 
✓ Decentralized (agents learn separately) 

Our model: Stackelberg games with decentralized learning
• Agents interact over T rounds. 
• At every round, the leader goes first, and the follower goes second. 
• Each agent observes their own stochastic rewards. 

Stackelberg games: sequential, misaligned, static environments 



Recap of static Stackelberg games

Follower best-responds to leader:  𝑏∗ 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈𝐵𝑢2 𝑎, 𝑏

Leader anticipates follower’s actions and best-responds: 
𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑢1 𝑎, 𝑏∗(𝑎)

Action Utility 

Leader 𝑎 ∈ 𝐴 𝑢1 𝑎, 𝑏

Follower 𝑏 ∈ 𝐵 𝑢2 𝑎, 𝑏
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Follower best-responds to leader:  𝑏∗ 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑏∈𝐵𝑢2 𝑎, 𝑏
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𝑎∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑢1 𝑎, 𝑏∗(𝑎)

Requires full knowledge of 𝑢2

Requires full knowledge of 𝑢1 and 𝑏∗

Action Utility 

Leader 𝑎 ∈ 𝐴 𝑢1 𝑎, 𝑏

Follower 𝑏 ∈ 𝐵 𝑢2 𝑎, 𝑏



Stackelberg games with decentralized learning
Each agent learns how to select actions over T rounds. 
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Leader Follower

Chooses action 𝑎𝑡 using 𝑨𝑳𝑮𝟏 Observes 𝑎𝑡 & chooses 𝑏𝑡 using 𝑨𝑳𝑮𝟐

At each time step 𝑡:

𝑨𝑳𝑮𝟏 = bandit algorithm 𝑨𝑳𝑮𝟐 = bandit algorithm

Each agent learns how to select actions over T rounds. 

We cast agent learning within the stochastic multi-armed bandit framework: 

Cumulative utility: σ𝑡=1
𝑇 𝑢1 𝑎𝑡, 𝑏𝑡 Cumulative utility: σ𝑡=1

𝑇 𝑢2 𝑎𝑡, 𝑏𝑡

A = arms, 𝑢1 = mean reward function B = arms, 𝑢2 = mean reward function

Observe stochastic reward 𝑢1 𝑎𝑡 , 𝑏𝑡 + 𝜂1,𝑡 Observe stochastic reward 𝑢2 𝑎𝑡 , 𝑏𝑡 + 𝜂2,𝑡
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Our model: stochastic rewards, utility of both agents, arbitrary misalignment, decentralized learning
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Due to misalignment, small errors by one agent can distort the other agent’s utility.
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Our error-tolerant benchmarks

𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

𝐦𝐢𝐧
𝒃∈𝑩𝝐(𝒂)

𝑢1 𝑎, 𝑏 + 𝜖 and  𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
𝐦𝐢𝐧
𝒂∈𝑨𝝐

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖

Definition (Error-tolerant benchmarks): 

Account for agent errors via 𝝐-approximate best-response sets: 

𝐵𝜖 𝑎 ∶= 𝑏 ∈ 𝐵 ∣ 𝑢2 𝑎, 𝑏 ≥ max
𝑏′∈𝐵

𝑢2 𝑎, 𝑏′ − 𝜖

𝐴𝜖: = 𝑎 ∈ 𝐴 ∣ max
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 ≥ max
𝑎′∈𝐴

min
𝑏′∈𝐵𝜖(𝑎′)

𝑢1 𝑎′, 𝑏′ − 𝜖
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𝜖-relaxed Stackelberg utility

Definition (Error-tolerant benchmarks): 

Account for agent errors via 𝝐-approximate best-response sets: 
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Definition (Error-tolerant benchmarks): 

Account for agent errors via 𝝐-approximate best-response sets: 

𝐵𝜖 𝑎 ∶= 𝑏 ∈ 𝐵 ∣ 𝑢2 𝑎, 𝑏 ≥ max
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Definition (Error-tolerant benchmarks): 

Account for agent errors via 𝝐-approximate best-response sets: 

worst-case 
error level
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Example of error-tolerant benchmarks
𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

min
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 + 𝜖 and  𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
min
𝑎∈𝐴𝜖

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖
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𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

We take 𝛿 < 𝛾 = 0.05 in this example.
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𝜖≤𝛾
max
𝑎∈𝐴

min
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 + 𝜖 and  𝛼2
𝑡𝑜𝑙: = inf
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max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖



Example of error-tolerant benchmarks

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟎

𝑎2 0.5, 0.6 0.4, 0.4

𝑏1 . 𝑏2

𝑎1 0.6, 𝛿 0.2, 𝟐 𝜹

𝑎2 0.5, 0.6 0.4, 0.4

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓 + 𝜹, 𝜹)

We take 𝛿 < 𝛾 = 0.05 in this example.

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓, 𝟑𝜹)

Green is 𝐵𝛿 𝑎 Pink is 𝐴𝛿

𝛼1
𝑡𝑜𝑙: = inf

𝜖≤𝛾
max
𝑎∈𝐴

min
𝑏∈𝐵𝜖(𝑎)

𝑢1 𝑎, 𝑏 + 𝜖 and  𝛼2
𝑡𝑜𝑙: = inf

𝜖≤𝛾
min
𝑎∈𝐴𝜖

max
𝑏∈𝐵

𝑢2 𝑎, 𝑏 + 𝜖



Our algorithmic results

• Standard algorithms can incur linear regret w.r.t the error-tolerant benchmarks.

• We construct algorithms achieving ෨𝑂 𝑇
2

3 regret w.r.t error-tolerant benchmarks. 

• Any algorithms incur Ω 𝑇
2

3 regret for some agent w.r.t error-tolerant benchmarks. 

• When agent utilities are partially aligned, we construct algorithms which achieve 

෨𝑂 𝑇
1

2 regret w.r.t the original Stackelberg benchmarks. 

Conclusion

Goal: design algorithms that achieve sublinear regret for both agents   
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Standard algorithms can incur linear regret
Proposition (Informal): Suppose both agents run ExploreThenCommit. Then 
both agents can incur linear regret w.r.t. the error-tolerant benchmarks. 

Leader would commit to 𝑎2
 Both players incur linear regret

Key issue: the follower’s exploration phase distorts the leader’s learning
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Warm-up: Modified ETC yields sublinear regret
Key algorithmic idea: leader waits for the follower to finish exploring before learning

Regret is sublinear for both players! 

Proposition (Informal): Suppose that:
• The follower runs ExploreThenCommit. 
• The leader runs a modified ExploreThenCommit where they discard observations 

from the follower’s exploration phase when computing the empirical means.

=> Both agents achieve ෩𝑶 𝑻
𝟐

𝟑 𝐴 𝐵 log 𝑇
1

3 regret w.r.t. error-tolerant benchmarks. 
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Regret scaling with 𝑻𝟐/𝟑 rate is unavoidable
Theorem (Informal): For any A𝐿𝐺1 and A𝐿𝐺2, some agent incurs Ω 𝑻

𝟐

𝟑 𝐵
1

3 regret. 

Conclusion



Regret scaling with 𝑻𝟐/𝟑 rate is unavoidable

𝑏1 . 𝑏2

𝑎1 0.5 + 𝛿, 𝛿 0, 𝟎

𝑎2 0.5, 3𝛿 0.5, 3𝛿

𝑏1 . 𝑏2

𝑎1 0.5 + 𝛿, 𝛿 0, 𝟐 𝜹

𝑎2 0.5, 3 𝛿 0.5, 3𝛿

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓 + 𝜹, 𝜹) (𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓, 𝟑𝜹)

Theorem (Informal): For any A𝐿𝐺1 and A𝐿𝐺2, some agent incurs Ω 𝑻
𝟐

𝟑 𝐵
1

3 regret. 



Regret scaling with 𝑻𝟐/𝟑 rate is unavoidable

𝑏1 . 𝑏2

𝑎1 0.5 + 𝛿, 𝛿 0, 𝟎

𝑎2 0.5, 3𝛿 0.5, 3𝛿

𝑏1 . 𝑏2

𝑎1 0.5 + 𝛿, 𝛿 0, 𝟐 𝜹

𝑎2 0.5, 3 𝛿 0.5, 3𝛿

To distinguish instances, need to explore a very suboptimal arm 𝒂𝟏, 𝒃𝟐 for the leader

(𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓 + 𝜹, 𝜹) (𝜶𝟏
𝒕𝒐𝒍, 𝜶𝟐

𝒕𝒐𝒍) = (𝟎. 𝟓, 𝟑𝜹)

Theorem (Informal): For any A𝐿𝐺1 and A𝐿𝐺2, some agent incurs Ω 𝑻
𝟐

𝟑 𝐵
1

3 regret. 



What if agents are partially aligned? 
Suppose that the two agents agree over which outcomes are different. 

𝐿 = sup
𝑎,𝑎′,𝑏,𝑏′

𝑢1 𝑎, 𝑏 − 𝑢1(𝑎
′, 𝑏′)

𝑢2 𝑎, 𝑏 − 𝑢2(𝑎
′, 𝑏′)

,
𝑢2 𝑎, 𝑏 − 𝑢2(𝑎

′, 𝑏′)

𝑢1 𝑎, 𝑏 − 𝑢1(𝑎
′, 𝑏′)

We show that L is bounded => the original Stackelberg benchmarks are achievable. 

Takeaway: Partial alignment makes learning easier and faster. 

Theorem (Informal): There exist algorithms such that both players achieve 

෩𝑶 𝑳𝟐 𝑻 𝑨 𝑩 regret w.r.t. the original Stackelberg benchmarks. 



Conclusion
We study Stackelberg games with decentralized learning.

Main finding: misalignment in agent utilities distorts learning dynamics

• We showed that the Stackelberg equilibrium utilities are unachievable.
• We designed error-tolerant benchmarks to better capture learning dynamics. 

• We constructed algorithms which achieve optimal ෩Θ 𝑇
2

3 regret.

• We showed that partial alignment makes learning easier and faster.

Future directions: allow for greater flexibility in leader algorithm, study application-specific 
learning algorithms, characterize equilibria in the meta-game between agents, etc. 
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