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Scale improves accuracy for an isolated system

(Kaplan et al., 2020)
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This work: impact of increases to scale under competing decision-makers 



Marketplace of competing decision-makers

Pretrained 
model 

Decision-maker 1’s 
fine-tuned model

Decision-maker 2’s 
fine-tuned model



Marketplace of competing decision-makers

Pretrained 
model 
Learns representations that 
improve with scale 

Decision-maker 1’s 
fine-tuned model

Decision-maker 2’s 
fine-tuned model



Marketplace of competing decision-makers

Pretrained 
model 
Learns representations that 
improve with scale 

Leverages representations for 
downstream objective (market share) 

Decision-maker 1’s 
fine-tuned model

Decision-maker 2’s 
fine-tuned model



Main question

Does  improving data representation quality (Bayes risk) improve user 

social welfare (overall predictive accuracy) under competition? 
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Consequences for ML scaling trends: Increasing “scale” 
may decrease social welfare under competition. 

Result (Informal): The social welfare (overall predictive accuracy) for users can be 

non-monotonic in data representation quality (Bayes risk). 



Our results

We study a model for competing model-providers, and we show 

non-monotonicity through:

1. A theoretical analysis of a stylized setup with closed-form equilibria 

2. An empirical analysis on synthetic data simulations and CIFAR-10 

representations from pretrained models for linear predictors 



Overview of our model
Task: multi-class classification with: 

● User distribution (x, y) ~ D where x ∈ Rd and y ∈ {0,1, 2, …, K-1} 
● Model family F of predictors f mapping Rd→{0,1, 2, …, K-1}

Interaction between model-providers and users: 

● Each of m model-providers chooses a predictor in F. 
● Each user (x, y) noisily chooses the model-provider offering them the best 

prediction.

● A model-provider’s utility is equal to the market share.

We study the Nash equilibria between model-providers. 



Theoretical analysis of equilibria in stylized setups

Mixture of 1d Gaussians with means 0 and 1
σ := std dev of Gaussians

4 subpopulations that need increasing #s of 
dimensions to detect and classify
D := representation dimension

Overall predictive loss at equilibrium is non-monotonic in Bayes risk. 



Simulations for linear predictors on CIFAR-10

Overall predictive loss at equilibrium is non-monotonic in Bayes risk. 

m=# of model-providers



Takeaways
We showed that under competition, the equilibrium social welfare can be 
non-monotonic in representation quality (as measured by Bayes risk). 

Consequence for ML scaling laws: Increases to “scale” may 
reduce overall predictive accuracy for users in real-world 

marketplaces with competing model-providers. 



Future work: scaling laws under competition?
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