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Scaling trends under competition Non-monotonicity of the social welfare Model
Increasing scale improves accuracy for an isolated system [4]. Result (Informal): When model-providers compete for users, the Task: classification over (x, y) ~ D with model family F

equilibrium social welfare (i.e., overall predictive accuracy) for users
can be non-monotonic in data representation quality (i.e., Bayes risk).
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Each model provider j € [m] chooses a predictor f; €F.
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Test Loss

Each user (x, y) noisily chooses j*(x,y) € [m] offering the
best prediction: Pr[j*(x,y) =j] < exp(- &(f; (x), y) | /¢).

3.2 1

w

3.0

2.4

L ={Crf2:3+108)~0:050
> . . 2.7

= Bayes risk
Equilibrium social loss
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Compute Dataset Size Parameters

A model-provider’s utility equals the market share:
u(fi, 1) =Ep[Prlj*(xy) =j11.
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AXIs of varying representations

However, in digital marketplaces, model-providers often
compete with each other for users.
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Theoretical characterization of non—monotonicity Intuition: Lower quality data representations lead to greater
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