Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition Meena Jagadeesan, Michael I. Jordan, Jacob Steinhardt*, Nika Haghtalab* (UC Berkeley)

Scaling trends under competition

Increasing scale improves accuracy for an **isolated system** [4].

However, in digital marketplaces, model-providers often compete with each other for users.

Main question: under competing model-providers, how does increasing scale impact equilibrium social welfare? We study this through the lens of data representations.

From scale to data representations

A bird's eye view:

- Pretrained model = learns data representations that improve with scale (e.g., # of parameters)
- Finetuning = uses these data representations to learn a model that optimizes an objective (e.g., market share)

Non-monotonicity of the social welfare

Result (Informal): When model-providers compete for users, the equilibrium social welfare (i.e., overall predictive accuracy) for users can be **non-monotonic** in data representation quality (i.e., Bayes risk).

Consequence for scaling trends: Increasing "scale" may decrease social welfare under competition.

Theoretical characterization of non-monotonicity

Proposition (Informal):

Consider binary classification where F = all deterministic functions. Let f_1, \dots, f_n f_m be a pure strategy Nash equilibrium. The equilibrium social loss is: $SL(f_1, ..., f_m) = E[\alpha(x) * 1[\alpha(x) < 1/m]],$ where $\alpha(x)$ is equal to: $\min(P[Y = 1 | X = x], P[Y = 0 | X = x]).$

(See the paper for generalization to multi-class classification.)

Example experiments on CIFAR-10

Model

Each model provider $j \in [m]$ chooses a predictor $f_i \in F$.

Our focus: pure strategy Nash equilibria in the game between *m* model-providers

Equilibrium social loss = $E[\ell(f_{i^*(x,y)}(x), y)]$

Intuition: Lower quality data representations lead to greater "disagreement" among the predictors chosen at equilibrium.

Seti	лр 1: Wo
	$x = \emptyset$
+	+ -
+	+ -

Setup 2	: Better data	representation c	quality
$\mathbf{x} = \mathbf{x}_0$	$\mathbf{x} = \mathbf{x}_0$	$\mathbf{x} = \mathbf{x}_1$	$\mathbf{x} = \mathbf{x}_1$
+		+ +	_
+	-	+ +	

 $f_1(x_0) = f_2(x_0) = 0, f_3(x_0) = 1$

References

NeurIPS 2023

Task: classification over $(x, y) \sim D$ with model family F

Each user (x, y) noisily chooses $j^*(x,y) \in [m]$ offering the best prediction: $\Pr[j^*(x,y) = j] \propto \exp(-\ell(f_i(x), y)) | / c).$

A model-provider's utility equals the market share: $u(f_{i}; f_{-i}) = E_{D}[Pr[j^{*}(x,y) = j]].$

Bayes risk = $\min_{f \in F} E[\ell(f(x), y)]$

Intuition for non-monotonicity

orst data representation quality

	X =	=Ø
	-	

 $f_1(x) = f_2(x) = 1, f_3(x) = 0$ Bayes risk = 0.4, Equilibrium social loss = 0

 $f_1(x_1) = f_2(x_1) = f_3(x_1) = 1$ Bayes risk = 0.3, Equilibrium social loss = 0.1

[1] Ben-Porat, Tennenholtz. "Regression equilibrium". EC 2019. [2] Kleinberg, Raghavan. "Algorithmic Monoculture". PNAS 2021. [3] Feng et al. "Bias-variance games". EC 2022 [4] Kaplan et al. "Scaling laws for neural language models." arXiv 2020.