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To attract users, a platform faces restrictions on what learning algorithm to offer.
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Competition affects what learning algorithm a platform will choose at equilibrium. 
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Our contribution: a theoretical framework to study competition between data-driven 
platforms and its impact on user utility at equilibrium



Motivation: Regulation of digital platforms
Perfect competition is typically considered a benchmark for market healthiness. 

- E.g., standard notions of market power (Lerner, 1934)
- E.g., antitrust policy (Gelhorn, 1975) 

But data-driven marketplaces seem to exhibit a very different market structure than 
typical marketplaces (e.g., Stigler ‘20,  Crèmer ‘19). 

Is perfect competition a suitable benchmark for a healthy digital marketplace? 
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Users “vote with their feet” and choose  their favorite product. 

A firm has to fully cater to user choices to retain their user base. 

Competition fully aligns market outcomes with user utility. 



A distinguishing aspect of data-driven platforms 

Recommender System

?
? ? ? ?

?
?

?

viewing history of the viewers;

length of different videos, etc.
choose what video to 
show each viewer

learning
Data Model 



A distinguishing aspect of data-driven platforms 

Recommender System

?
? ? ? ?

?
?

?

viewing history of the viewers;

length of different videos, etc.
choose what video to 
show each viewer

learning
Data Model 

The platform’s data comes from users and depends on user choices. 



A distinguishing aspect of data-driven platforms 

Recommender System

?
? ? ? ?

?
?

?

viewing history of the viewers;

length of different videos, etc.
choose what video to 
show each viewer

learning
Data Model 

The platform’s data comes from users and depends on user choices. 

The quality of recommendations depends on how many users participate on the platform. 



Main question

To what extent does competition align platform recommendations with user 

utility in data-driven marketplaces? 
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Our main result

Result (Informal): Competition does not fully align market outcomes with user 

utility at equilibrium in data-driven digital marketplaces. 

Misalignment occurs 

- when the platforms have separate data repositories, or

- when the platforms share a data repository. 
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At each time step:

1. All users arrive at the platform.

2. For each user, the platform recommends some “arm” i and receives a noisy 
observation qi + η.
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How does a platform choose recommendations?
The data repository and algorithm affect the platform’s recommendations.  

The platform’s action is to choose an algorithm from a predefined class.

Algorithm class includes general algorithms (that perform well in diff contexts) e.g.: 

- Greedy and mixtures with uniform exploration 
- Thompson sampling and mixtures with uniform exploration 
- The optimal algorithm (derived from the Gittins index)

history of observations of arm quality choice of arm given a data repository 
(i.e. given posterior beliefs) Separate data (status quo): platform only has 

access to its own observations
Shared data (proposed in policy): platform can 
access the other platform’s observations too
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Measuring alignment with user utility
Stages of the Stackelberg game: 

1:  Platforms commit to algorithms A
1 

and A
2

.  

2:  Each user choose between platforms. 

Participant actions and equilibrium concepts

                       User utility = (discounted) cumulative quality of recommended arms 
                                  Users arrive at a Nash equilibrium.

                       Platform objective = # of users (proxy for profit) 
             Platforms arrive at Nash equilibrium.

Definition: The alignment of (A
1 

,A
2

)  is:

Q(A
1 

,A
2

) := the min utility of any user 

at user equilibrium for A
1 

and A
2

.

We focus on (A
1, 

A
2

) that are an 
equilibrium for the platforms.  
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Theorem (Informal): If platforms have separate data 
repositories, then there are multiple equilibria whose 
alignment spans from single-user opt to global opt. 

Theorem (Informal): If platforms have a shared data 
repository, then there is a unique equilibrium with alignment 
level strictly between single-user opt and global opt. 
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Intuition 

Separate data repositories: 
- A platform can make up for a suboptimal algorithm with a large user base. 
- A platform retains their user base as long as their algorithm achieves at least 

single-user opt utility. 

Shared data repository: 

- A platform can’t make up for a suboptimal algorithm with a larger user base!

- Opt algorithm for a user given other users is not the cooperative opt algorithm.

- Users wish to free-ride off of the exploration of other users.



Summary of our contributions
Our goal was to investigate the role of competition in digital marketplaces, motivated 

by regulation and antitrust enforcement. 

Towards this, we presented a framework to analyze competition between platforms 

solving a multi-armed bandit learning problem. 

We showed competition does not fully align market outcomes with user utility.

Our results applied to both separate data repositories (status quo) and a shared data 
repository (considered in policy discussions).  



Towards technical foundations for regulation?

Future work: study the impact of competition between digital platforms in more general contexts 
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