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Content creator incentives

In @ recommender system, the content landscape is
shaped by the strategic choices of content creators.

Creators

Recommender system

Our main results

High-level finding: Content creator incentives to game an
engagement metric disrupt the content landscape and
iInfluence downstream engagement, welfare, and quality.
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Finding 4: Optimizing
engagement can lead to
lower user engagement

than optimizing quality.
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Rec sys maximizes an engagement metric M:

j*(t; [Py, - pp]) = argmaxjepy(M(p;) - 1[f(p;, t) = 0])
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Methodology

We propose a stylized model for the game between creators
who compete for recommendations.

Creator payoff depends on rec sys policy and costs:
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Creator wins recommendation User consumes content Creator costs

We solve for the equilibria in the game between creators
(which determines the content landscape).

When evaluating a recommendation policy, we factor in the

Impact of quality vs. gaming: endogeneity of the content landscape.

Peostty T => Engagement M 1, User utility f 1, Creator costs c 1 (expensive)
=> Engagement M 1, User utility f {, Creator costs c 1 (cheap)
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Our focus: the symmetric mixed Nash equilibria in
between creators (determines content landscape).
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