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Cohort pipelines

Examples:

• Hire team & promote top performer

• Screen a batch of resumes & interview top 
candidates

(Can also consider pipelines with many cohort 
selection/scoring steps in sequence.)

Candidates

1. Cohort Selection

2. Scoring

.9            .7          .2               

Two-stage cohort pipeline: a cohort selection step 
followed by a scoring step within the chosen cohort



A motivating example-- employment

Majority group S; Minority group T

Cohort selection: hire every individual with the same probability. 

• “Pack” high-potential 𝑡 ∈ 𝑇 into same teams.

• Place all other hires on mixed skilled teams. 

Scoring step: score and promote according to relative performance.

 Fewer high-potential 𝑡 ∈ 𝑇 promoted than high-potential 𝑠 ∈ 𝑆 .

Fairness can degrade arbitrarily even in a 2-stage cohort pipeline. 



The setup

• Universe 𝑈 of individuals with similarity metric D

• Collection of “permissible” cohorts 𝒞 ⊆ 2𝑈

• Cohort selection mechanism 𝐴 that chooses a cohort in 𝒞

• Score function 𝑓: 𝒞 × 𝑈 → [0,1] for individuals within cohort context

• Pipeline 𝑓 ∘ 𝐴:

1. Run 𝐴 to select a cohort C ∈ 𝒞.

2. Score all individuals 𝑢 ∈ 𝐶 according to 𝑓 𝐶, 𝑢 .

Our goal: Ensure that the pipeline 𝑓 ∘ 𝐴 treats similar individuals similarly.  



Fairness of each step in isolation

Starting point: individual fairness (Dwork et al. ‘12)

“Similar people should be treated similarly (w.r.t similarity metric D)”

• 𝐴 is an individually fair cohort selection mechanism if:

For all 𝑢, 𝑣 ∈ 𝑈, Pr 𝑢 ∈ 𝐶 − Pr 𝑣 ∈ 𝐶 ≤ 𝐷(𝑢, 𝑣)

(Dwork & Ilvento 2019). 

• 𝑓: 𝒞 × 𝑈 → [0,1] is intra-cohort individually fair if:

For all 𝐶 ∈ 𝒞 and 𝑢, 𝑣 ∈ C, 𝑓 𝐶, 𝑢 − 𝑓 𝐶, 𝑣 ≤ 𝐷(𝑢, 𝑣).



Fair components not enough

Hiring (𝐴) followed by promotion (𝑓).

• Each candidate has a quality 𝑞𝑖 ∈ 0,1

• Minority group 𝑇; Majority group 𝑆

• Similarity metric given by 𝐷 𝑖, 𝑗 ≔ 𝑞𝑖 − 𝑞𝑗

𝐴 “packs” { 𝑡 ∈ 𝑇 ∣ 𝑞𝑡 ≥ 0.8} in same cohorts; balances other cohorts w.r.t.
quality score. 

𝑓 assigns weight proportional to quality so that ∑𝑢∈𝐶𝑓 𝐶, 𝑢 = 1.

Intuition: High-quality 𝑡 ∈ 𝑇 receive lower scores than high-quality 𝑠 ∈ 𝑆.  



Example
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Example
Bob

0.2

Alice

0.8

Charlie

0.5

Danielle

0.5

𝐴

.2 .5 .3

𝑓 .6 .4 .6 .4 .6 .4

Alice Bob Charlie Danielle

Hire .8 .2 .5 .5

Promote .48 .08 .2 .24

• 𝐴 is individually fair

• 𝑓 is intra-cohort 
individually fair

• But the pipeline results 
in different promotion 
outcomes for equal 
individuals Charlie and 
Danielle



Our contributions

1. Formalize definitions of pipeline fairness and extensions to a family 
of scoring functions. 

2. Provide sufficient conditions for achieving pipeline fairness. These 
conditions allow for flexible design of the cohort selection 
mechanism and scoring functions by different bodies. 

3. Construct explicit cohort selection mechanisms for two families of 
scoring functions. These mechanisms achieve pipeline fairness and 
are expressive.  



DEFINITIONS



Pipeline fairness and robustness (Informal)
Notation: 𝐴 cohort selection mechanism, 𝑓 scoring function, 𝐷 similarity metric 

Definition: 𝜶-individually fairness for pipelines (Informal)

𝑓 ∘ 𝐴 is 𝛼-individually fair if for all 𝑢, 𝑣 ∈ 𝑈, 𝑑 𝑓 ∘ 𝐴 𝑢 , 𝑓 ∘ 𝐴 𝑣 ≤ 𝛼𝐷 𝑢, 𝑣 .

But 𝐴 and 𝑓 might be designed by separate bodies!

 Not ideal to “lock” into a single scoring function 𝑓.

Instead, we require that 𝑓 lives in some pre-specified family ℱ:

Definition: 𝜶-robustness for pipelines (Informal)

𝐴 is 𝛼-robust with respect to ℱ if 𝑓 ∘ 𝐴 is 𝛼-individually fair for every 𝑓 ∈ ℱ. 



Defining pipeline individual fairness formally
To formally define pipeline individual fairness, we need to specify 𝑓 ∘ 𝐴 𝑢 and 𝑑.

Outcome is either not selected or a score.

• Outcome space 𝑂𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 0,1 ∪ ⊥.

• Δ(𝑂𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒) is space of distributions over outcomes 

(so 𝑓 ∘ 𝐴 𝑢 ∈ Δ(𝑂𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒))

What metric 𝑑 over Δ(𝑂𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒) captures fairness desiderata?

We design metrics 𝑑 over Δ(𝑂𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒) in two steps:   

1. Interpret Δ(𝑂𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒) as a distribution over [0,1].

2. Select a metric over Δ 0,1 .



Step 1: Interpret the distribution

Two approaches to map Δ( 0,1 ∪ ⊥) to Δ 0,1 :

1. View not selected as a score of 0.

2. Consider distribution conditioned on being selected. 



Example

• Equal hiring rate

• Difference in 
promotion respects 
metric

• Conditional 
probability of 
promotion 10x the 
metric distance!

…

𝐴
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Conditional vs. Unconditional Interpretations

Pr
𝐴
[𝐶] represents the probability over the randomness of 𝐴 that 𝐴 outputs the cohort 𝐶.

Unconditional Distribution

Treats “not selected” as score of 0. Places probability mass

• 1 − ∑𝐶∈𝒞 Pr
𝐴
𝐶 Pr[𝑓 𝐶, 𝑢 ≠ 0] on score 0.

• ∑𝐶∈𝒞 Pr𝐴
𝐶 Pr[𝑓 𝐶, 𝑢 = 𝑠] on score 𝑠. 

Conditional Distribution

Conditions on selection in the cohort. Places probability mass

•
∑𝐶∈𝒞 Pr𝐴

𝐶 Pr[𝑓 𝐶,𝑢 =𝑠]

∑𝐶∈𝒞,𝑢∈𝐶 Pr𝐴
[𝐶]

on each score 𝑠.



Step 2: Select distance metric over Δ 0,1

Two approaches to select distance metric over Δ 0,1 :

1. Consider differences in expected score. 

2. Account for uncertainty through mass-moving distance.



Example 3.

• Equal hiring rate

• Equal promotion rate

• But, compared with 
Danielle and Evan, 
Charlie has much 
higher certainty of 
promotion (or not) 

Alice Bob Charlie Danielle Evan

Hire .4 .4 .4 .4 .4

Promote .32 .08 .2 .2 .2

Bob

0.1

Alice

1.0

Charlie

0.5

Danielle

0.5

Evan

0.5

𝑓 .9 .1 .7 .3 .7 .3 .5 .5

𝐴

.2 .2 .4.2



Choice for distance metric over Δ 0,1

• Expectation is often suitable
• Simple, captures difference in binary outcomes or scores well

• But hides certainty

• Total variation distance is a natural choice, but too strict:
• e.g., Charlie has probability 0.5 + 𝜀 or 0.5 − 𝜀

• Mass-moving distance 
• Combines total variation distance with 

earth-mover’s distance.

• Similar individuals should receive similar 
distributions over close (but not necessarily identical) scores 



Robustly fair pipelines
Define robustness w.r.t. different 
metrics over Δ(𝑂𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒):

Definition: Robust pipeline
Let (𝑑, 𝐷, 𝐴, 𝛼, 𝒞, ℱ) be a pipeline consisting of a distance metric 𝑑 ∈

𝑑𝑐𝑜𝑛𝑑,𝔼, 𝑑𝑐𝑜𝑛𝑑,𝑀𝑀𝐷 , 𝑑𝑢𝑛𝑐𝑜𝑛𝑑,𝔼, 𝑑𝑢𝑛𝑐𝑜𝑛𝑑,𝑀𝑀𝐷 over Δ(𝑂𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒), a set 

of permissible cohorts 𝒞, a cohort selection mechanism 𝐴, and a set of 
scoring functions ℱ. 
The pipeline is robust if 𝑓 ∘ 𝐴 is 𝛼-individually fair for all 𝑓 ∈ ℱ.

Expectation Mass-moving distance

Conditional 𝑑𝑐𝑜𝑛𝑑,𝔼 𝑑𝑐𝑜𝑛𝑑,𝑀𝑀𝐷

Unconditional 𝑑𝑢𝑛𝑐𝑜𝑛𝑑,𝔼 𝑑𝑢𝑛𝑐𝑜𝑛𝑑,𝑀𝑀𝐷

Which metric is most appropriate is context-dependent. 



CONDITIONS FOR SUCCESS



Constructing robustly fair pipelines

Our goal: Simple conditions on 𝐴 that guarantee pipeline robustness 
with respect to ℱ.

The strength of the conditions on 𝐴 heavily depends on ℱ.

• When ℱ consists of functions that ignore the cohort, then 𝐴 just 
needs to be individually fair.

• When ℱ accounts for relative performance, conditions are stronger.

Key idea: Similar individuals need to be assigned to similar distributions 
over cohorts. Similarity of distributions is dependent on ℱ.
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The policy: 𝛿ℱ

Can summarize ℱ as a distance function:

𝛿ℱ( 𝐶, 𝑢 , 𝐶′, 𝑣 ) ≔ sup
𝑓∈ℱ

|𝑓 𝐶, 𝑢 − 𝑓(𝐶′, 𝑣)|

𝛿ℱ is a simple form of communication between 𝐴 and ℱ.

𝛿ℱ can be thought of a “policy” agreed upon by both parties. 



Conditions on 𝐴 based on 𝛿ℱ

Similarity of distributions over cohorts is dictated by 𝛿ℱ .

For each pair 𝑢, 𝑣 ∈ 𝑈:

1. Consider cohort contexts { 𝐶, 𝑢 ∣ 𝑢 ∈ 𝐶, 𝐶 ∈ 𝒞} ∪ { 𝐶, 𝑣 ∣ 𝑣 ∈ 𝐶, 𝐶 ∈ 𝒞}

2. Group cohort contexts into clusters so that 𝛿ℱ 𝐶, 𝑥 , 𝐶′, 𝑦 ≤
𝐷 𝑢, 𝑣 within cluster.

3. Obtain distributions 𝑝𝑢 and 𝑝𝑣 over clusters. 

4. Requirement: 𝑇𝑉 𝑝𝑢, 𝑝𝑣 small 
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TWO SAMPLE CONSTRUCTIONS



Two policies 𝛿ℱ

Individual Interchangeability

• Scoring function “stable” if a single individual is swapped in the cohort.

Quality-based Scoring

• Cohort contexts with similar “quality profiles” are treated similarly.



Individual interchangeability
• Scoring function “stable” if a single individual is swapped.

• With 𝑑𝑢𝑛𝑐𝑜𝑛𝑑,𝑀𝑀𝐷 , any monotonic mechanism works.
(If Pr 𝑢 ∈ 𝐶 ≤ Pr 𝑣 ∈ 𝐶 , then 𝐴 𝐶 ∪ 𝑢 ≤ 𝐴 𝐶 ∪ 𝑣 .

• With 𝑑𝑐𝑜𝑛𝑑,𝑀𝑀𝐷, stronger requirements are necessary.
We design a mechanism (Conditioning Mechanism) that works.  



Conditioning Mechanism

• Mechanism is expressive (dissimilar people can be treated dissimilarly; 
people can have very different probabilities of being selected).  

• But mechanism yields “unstructured cohorts”. 



Quality-based scoring
• Universe can be partitioned into “quality groups” where metric is closer 

within each quality group than between quality groups.

• Scores 𝑓 𝐶, 𝑢 determined by 

1. Quality group membership of 𝑢

2. Quality profile: number of people from each quality group in 𝐶.

• High-level idea: Mechanism can select cohorts with “structure” based on 
quality profile. Flexibility in choosing individuals within each quality group. 



Conclusion & Future Work 
• Fairness degrades ungracefully in cohort pipelines.
• We proposed pipeline individual fairness where similar individuals have similar 

distributions over outcomes w.r.t. careful selections of a metric over distributions 
over outcomes. We proposed pipeline robustness that requires pipeline individual 
fairness for every scoring function in a family. 

• We provided conditions under which pipeline fairness is achieved. We proposed a 
“policy” as a means of communication, and we proved a sufficient condition for 
success in terms of distributions over the appropriate clusters. 

• We constructed explicit cohort selection mechanisms for two policies. 

Future work: different metrics; formalize tradeoffs between 𝛿ℱ policy complexity and 
the expressiveness of cohort selection; ranking instead of scoring


