
Learning Equilibria in Matching
Markets from Bandit Feedback

Joint work w/ Alexander Wei, Yixin Wang, Michael I. Jordan, and Jacob Steinhardt (UC Berkeley)

(Appeared at NeurIPS 2021)

Meena Jagadeesan (UC Berkeley)

Data-Driven Matching Platforms

Data-Driven Matching Platforms

There are two “sides” of the marketplace:
- Think of one side as customers (riders) and the other side as providers (drivers).

Data-Driven Matching Platforms

There are two “sides” of the marketplace:
- Think of one side as customers (riders) and the other side as providers (drivers).

Both sides have preferences over each other.
- E.g., a driver may prefer certain types of routes; a rider may prefer drivers who are closer

Data-Driven Matching Platforms

There are two “sides” of the marketplace:
- Think of one side as customers (riders) and the other side as providers (drivers).

Both sides have preferences over each other.
- E.g., a driver may prefer certain types of routes; a rider may prefer drivers who are closer

The platform recommends matchings (and suggests $ transfers) between participants.
- E.g. Uber suggests a match between a driver and a rider along with a $ transfer

Data-Driven Matching Platforms

There are two “sides” of the marketplace:
- Think of one side as customers (riders) and the other side as providers (drivers).

Both sides have preferences over each other.
- E.g., a driver may prefer certain types of routes; a rider may prefer drivers who are closer

The platform recommends matchings (and suggests $ transfers) between participants.
- E.g. Uber suggests a match between a driver and a rider along with a $ transfer

Data-driven nature of recommendations:
- Learn preferences from past data
- Make decisions under uncertainty when recommending a matching between participants

Two-Sided Matching Platform with Transfers

Matching

Transfers

Market outcome = matching + transfers

Two-Sided Matching Platform with Transfers

Matching

Transfers

Market outcome = matching + transfers
Utility values of agent C for matching with
agents P and Q

Two-Sided Matching Platform with Transfers

?

?

?

?

?

?

Matching

Transfers

Market outcome = matching + transfers
Utility values of agent C for matching with
agents P and Q

Two-Sided Matching Platform with Transfers

?

?

?

?

?

?

Matching

Transfers

Market outcome = matching + transfers
Utility values of agent C for matching with
agents P and Q

Our contribution: incentive-aware learning framework for matching markets

Matching + Learning: Challenges

Platform wants to align market outcomes with agent preferences
- To keep agents, must offer desirable matches at fair prices

But agent preferences are unknown…

Matching + Learning: Challenges

Platform wants to align market outcomes with agent preferences
- To keep agents, must offer desirable matches at fair prices

But agent preferences are unknown…

Approach: learn agent preferences from repeated feedback!

Existing Approaches

Classical economic theory:

● Focuses on known agent

preferences

● Deferred acceptance etc. finds

stable outcomes given fixed

preferences

Classical multi-armed bandits:

● Combinatorial bandits maximizes

total welfare of the matching, an

incentive-unaware objective

Existing Approaches

Classical economic theory:

● Focuses on known agent

preferences

● Deferred acceptance etc. finds

stable outcomes given fixed

preferences
learning and exploration?

incentive-awareness?

preference structures?

uncertainty about preferences?

Classical multi-armed bandits:

● Combinatorial bandits maximizes

total welfare of the matching, an

incentive-unaware objective

Existing Approaches

Classical economic theory:

● Focuses on known agent

preferences

● Deferred acceptance etc. finds

stable outcomes given fixed

preferences
learning and exploration?

incentive-awareness?

preference structures?

How should stable market outcomes be learned?
And what structures make efficient learning possible?

uncertainty about preferences?

Classical multi-armed bandits:

● Combinatorial bandits maximizes

total welfare of the matching, an

incentive-unaware objective

Existing Approaches

Classical economic theory:

● Focuses on known agent

preferences

● Deferred acceptance etc. finds

stable outcomes given fixed

preferences

Classical multi-armed bandits:

● Combinatorial bandits maximizes

total welfare of the matching, an

incentive-unaware objective

learning and exploration?

incentive-awareness?

preference structures?

How should stable market outcomes be learned?
And what structures make efficient learning possible?

uncertainty about preferences?

 This work: Brings together market design + multi-armed bandits to
answer these questions

Our Contribution
I. Framework
● Develop bandit framework for learning stable outcomes in matching markets
● Introduce Subset Instability as an learning objective

II. Algorithm Design
● Design no-regret algorithms for learning stable market outcomes
● Give examples of how preference structure impacts regret

III. Extensions
● Interpret learning objective as platform profit
● Extend framework and algorithms to matching without transfers

Related Work
Matching with known preferences:

e.g., Gale and Shapley (AMM, 1962), Shapley and Shubik (IJGT, 1971)

Matching with bandit feedback:

e.g., Das, Kamenica (IJCAI ‘05), Liu, Mania, Jordan (AISTATS ‘20), Johari, Kamble, Kanoria (Operations Research, ‘21), Kasy,
Teytelboym (Econometrics Journal, 2022), Sankararaman, Basu, Sankararaman (AISTATS 2021), Cen, Shah (AISTATS 2022)

Learning stable matchings when preferences can evolve:

e.g., (Min, Wang, Xu, Wang, Jordan, Yang, 2022)

Other perspectives on learning stable matchings:

e.g., Ashlagi, Braverman, Kanoria, Shi (Management Science, ‘20), Emamjomeh-Zadeh, Gonczarowski, Kempe (EC ‘20)

Combinatorial bandits:

e.g., Cesa-Bianchi, Lugosi (J. CS Sci. 2012), Gai, Krishnamachari, Jain (Trans. Netw., ‘12), Chen, Wang, Yuan (ICML ‘13)

Outline for the rest of the talk

1. Background on stable matchings with transfers (Shapley,
Shubik ‘71)

2. Our framework for learning stable market outcomes

3. Designing algorithms to learn stable market outcomes

4. Extensions and Conclusion

Outline for the rest of the talk

1. Background on stable matchings with transfers (Shapley,
Shubik ‘71)

2. Our framework for learning stable market outcomes

3. Designing algorithms to learn stable market outcomes

4. Extensions and Conclusion

Stable Matchings with Transfers
(Shapley, Shubik ‘71)

Two-Sided Matching Market with Transfers

Matching

Transfers

Market outcome = matching + transfers
Utility values of agent C for matching with
agents P and Q

Two-Sided Matchings with Transfers
Participants:

 Set I of customers

Set J of providers

Market outcome:
- Matching μ : I ∪ J → I ∪ J  that maps each

agent to their match
- Transfer τ  ∈  ℝI ∪ J, with agent a receiving

transfer τa

Utilities: agent a receives utility ua(μ(a)) + τa from
market outcome (μ, τ)

Two-Sided Matchings with Transfers
Participants:

 Set I of customers

Set J of providers

Market outcome:
- Matching μ : I ∪ J → I ∪ J  that maps each

agent to their match
- Transfer τ  ∈  ℝI ∪ J, with agent a receiving

transfer τa

Utilities: agent a receives utility ua(μ(a)) + τa from
market outcome (μ, τ)

Two-Sided Matchings with Transfers
Participants:

 Set I of customers

Set J of providers

Market outcome:
- Matching μ : I ∪ J → I ∪ J  that maps each

agent to their match
- Transfer τ  ∈  ℝI ∪ J, with agent a receiving

transfer τa

Utilities: agent a receives utility ua(μ(a)) + τa from
market outcome (μ, τ)

Two-Sided Matchings with Transfers
Participants:

 Set I of customers

Set J of providers

Market outcome:
- Matching μ : I ∪ J → I ∪ J  that maps each

agent to their match
- Transfer τ  ∈  ℝI ∪ J, with agent a receiving

transfer τa

Utilities: agent a receives utility ua(μ(a)) + τa from
market outcome (μ, τ)

Two-Sided Matchings with Transfers
Participants:

 Set I of customers

Set J of providers

Market outcome:
- Matching μ : I ∪ J → I ∪ J  that maps each

agent to their match
- Transfers τ  ∈  ℝI ∪ J, with agent a receiving

transfer τa

Utilities: agent a receives utility ua(μ(a)) + τa from
market outcome (μ, τ)

Two-Sided Matchings with Transfers
Participants:

 Set I of customers

Set J of providers

Market outcome:
- Matching μ : I ∪ J → I ∪ J  that maps each

agent to their match
- Transfers τ  ∈  ℝI ∪ J, with agent a receiving

transfer τa

Utilities: agent a receives utility ua(μ(a)) + τa from
market outcome (μ, τ)

Stability of a market outcome
Notation: matching μ : I ∪ J → I ∪ J, transfers τ  ∈  ℝI ∪ J , utility is ua(μ(a)) + τa

Stability captures the alignment of a market outcome with preferences.

Definition (Shapley, Shubik, 1971): A market outcome (μ, τ) is stable if (1) there are

no blocking pairs and (2) it satisfies individually rationality.

No blocking pairs: no pair (i, j) would prefer to match with each other over (μ, τ):

ui(j) + uj(i) > (ui(μ(i)) + τi) + (uj(μ(j)) + τj)

Individual rationality: no agent would prefer to quit the platform, as in:

ua(μ(a)) + τa > 0

Stability of a market outcome
Notation: matching μ : I ∪ J → I ∪ J, transfers τ  ∈  ℝI ∪ J , utility is ua(μ(a)) + τa

Stability captures the alignment of a market outcome with preferences.

Definition (Shapley, Shubik, 1971): A market outcome (μ, τ) is stable if (1) there are

no blocking pairs and (2) it satisfies individually rationality.

No blocking pairs: no pair (i, j) would prefer each other over (μ, τ). That is:

for all (i, j) : ui(j) + uj(i) ≤ (ui(μ(i)) + τi) + (uj(μ(j)) + τj).

Individual rationality: no agent would prefer to quit the platform. That is,

for all a : ua(μ(a)) + τa ≥ 0.

Example of a stable market outcome

No blocking pairs: ui(j) + uj(i) ≤ (ui(μ(i)) + τi) + (uj(μ(j)) + τj) for all pairs (i, j)

Individual rationality: ua(μ(a)) + τa ≥ 0 for every agent a

No blocking pairs: 12 + (-10) < (9 - 6)

Individual rationality: 9 - 6 > 0 and -5 + 6 > 0

Properties of stable matchings with transfers
1. Maximum matching: for any stable market outcome (μ, τ), the matching μ

maximizes total utility

μ ∈ argmax {∑ ua(μ*(a)) | μ* is a matching over agents}.

2. Transfers are not unique: For any maximum matching μ, there are typically
infinitely many transfers τ for which (μ, τ) is a stable market outcome.

3. Linear program formulation: Stability can be formulated as an LP with primal
variables are matchings μ and the dual variables are related to transfers τ.

(Shapley, Shubik, 1971)

Properties of stable matchings with transfers
1. Maximum matching: for any stable market outcome (μ, τ), the matching μ

maximizes total utility

μ ∈ argmax {∑ ua(μ*(a)) | μ* is a matching over agents}.

2. Transfers are not unique: For any maximum matching μ, there are typically
infinitely many transfers τ for which (μ, τ) is a stable market outcome.

3. Linear program formulation: Stability can be formulated as an LP with primal
variables are matchings μ and the dual variables are related to transfers τ.

(Shapley, Shubik, 1971)

Properties of stable matchings with transfers
1. Maximum matching: for any stable market outcome (μ, τ), the matching μ

maximizes total utility

μ ∈ argmax {∑ ua(μ*(a)) | μ* is a matching over agents}.

2. Transfers are not unique: For any maximum matching μ, there are typically
infinitely many transfers τ for which (μ, τ) is a stable market outcome.

3. Linear program formulation: Stability can be formulated as an LP with primal
variables are matchings μ and the dual variables are related to transfers τ.

(Shapley, Shubik, 1971)

Example of a stable market outcome

No blocking pairs: ui(j) + uj(i) ≤ (ui(μ(i)) + τi) + (uj(μ(j)) + τj) for all pairs (i, j)

Individual rationality: ua(μ(a)) + τa ≥ 0 for every agent a

No blocking pairs: 12 + (-10) < (9 - 6)

Individual rationality: 9 - 6 > 0 and -5 + 6 > 0

Example of a stable market outcome

No blocking pairs: ui(j) + uj(i) ≤ (ui(μ(i)) + τi) + (uj(μ(j)) + τj) for all pairs (i, j)

Individual rationality: ua(μ(a)) + τa ≥ 0 for every agent a

No blocking pairs: 12 + (-10) < (9 - 6)

Individual rationality: 9 - 6 > 0 and -5 + 6 > 0

Note that:

1. (C, P) is a maximum matching

2. (C, P) with “pay 7” is also stable.

Outline for the rest of the talk

1. Background on stable matchings with transfers (Shapley,
Shubik ‘71)

2. Our framework for learning stable market outcomes

3. Designing algorithms to learn stable market outcomes

4. Extensions and Conclusion

Our Framework

Learning takes place over T rounds. In the t-th round:

● Agents It ⊆ I, Jt ⊆ J arrive to the market.

● Platform selects a market outcome: a matching with transfers (μt, τt)

● Platform observes bandit feedback: noisy utilities ua(μ
t(a)) + ε for each agent a

● The platform incurs loss given by instability Instab(μt, τt) of the selected outcome.

Learning and Feedback Model

Learning takes place over T rounds. In the t-th round:

● Agents It ⊆ I, Jt ⊆ J arrive to the market.

● Platform selects a market outcome: a matching with transfers (μt, τt)

● Platform observes bandit feedback: noisy utilities ua(μ
t(a)) + ε for each agent a

● The platform incurs loss given by instability Instab(μt, τt) of the selected outcome.

Learning and Feedback Model

Learning takes place over T rounds. In the t-th round:

● Agents It ⊆ I, Jt ⊆ J arrive to the market.

● Platform selects a market outcome: a matching with transfers (μt, τt)

● Platform observes bandit feedback: noisy utilities ua(μ
t(a)) + ε for each agent a

● The platform incurs loss given by instability Instab(μt, τt) of the selected outcome.

Learning and Feedback Model

Learning takes place over T rounds. In the t-th round:

● Agents It ⊆ I, Jt ⊆ J arrive to the market.

● Platform selects a market outcome: a matching with transfers (μt, τt)

● Platform observes bandit feedback: noisy utilities ua(μ
t(a)) + ε for each agent a

● The platform incurs loss given by instability Instab(μt, τt) of the selected outcome.

Learning and Feedback Model

Learning takes place over T rounds. In the t-th round:

● Agents It ⊆ I, Jt ⊆ J arrive to the market.

● Platform selects a market outcome: a matching with transfers (μt, τt)

● Platform observes bandit feedback: noisy utilities ua(μ
t(a)) + ε for each agent a

● The platform incurs loss given by instability Instab(μt, τt) of the selected outcome.

Learning and Feedback Model

Learning takes place over T rounds. In the t-th round:

● Agents It ⊆ I, Jt ⊆ J arrive to the market.

● Platform selects a market outcome: a matching with transfers (μt, τt)

● Platform observes bandit feedback: noisy utilities ua(μ
t(a)) + ε for each agent a

● The platform incurs loss given by instability Instab(μt, τt) of the selected outcome.

Regret = the cumulative loss over time

Learning and Feedback Model

 Instab(μt, τt)

Why do we need an instability measure?
Stability is a binary notion, but we need a continuous notion.

- With uncertainty, impossible to guarantee exact stability.

Goal: design a measure of “distance from stability” that is:

(1) tractable for learning, and

(2) economically meaningful.

A naive measure of quality: total utility ∑ ua(μ(a)) = ∑ ua(μ(a)) + τa across agents

Utility difference = difference in utility achieved by μ and max possible utility

 max {∑ ua(μ*(a)) | μ* is a matching over agents} - ∑ ua(μ(a))

Utility difference is the standard loss function in combinatorial bandits:

e.g. (Cesa-Bianchi, Lugosi, 2012), (Gai, Krishnamachari, Jain, 2012), (Chen, Wang, Yuan, 2013), etc.

But for matching with transfers: utility difference entirely ignores the transfers!

A naive measure of instability: utility difference

A naive measure of quality: total utility ∑ ua(μ(a)) = ∑ ua(μ(a)) + τa across agents

Utility difference = difference in utility achieved by μ and max possible utility

 max {∑ ua(μ*(a)) | μ* is a matching over agents} - ∑ ua(μ(a))

Utility difference is the standard loss function in combinatorial bandits:

e.g. (Cesa-Bianchi, Lugosi, 2012), (Gai, Krishnamachari, Jain, 2012), (Chen, Wang, Yuan, 2013), etc.

But for matching with transfers: utility difference entirely ignores the transfers!

A naive measure of instability: utility difference

A naive measure of quality: total utility ∑ ua(μ(a)) = ∑ ua(μ(a)) + τa across agents

Utility difference = difference in utility achieved by μ and max possible utility

 max {∑ ua(μ*(a)) | μ* is a matching over agents} - ∑ ua(μ(a))

Utility difference is the standard loss function in combinatorial bandits:

e.g. (Cesa-Bianchi, Lugosi, 2012), (Gai, Krishnamachari, Jain, 2012), (Chen, Wang, Yuan, 2013), etc.

A naive measure of instability: utility difference

A naive measure of quality: total utility ∑ ua(μ(a)) = ∑ ua(μ(a)) + τa across agents

Utility difference = difference in utility achieved by μ and max possible utility

 max {∑ ua(μ*(a)) | μ* is a matching over agents} - ∑ ua(μ(a))

Utility difference is the standard loss function in combinatorial bandits:

e.g. (Cesa-Bianchi, Lugosi, 2012), (Gai, Krishnamachari, Jain, 2012), (Chen, Wang, Yuan, 2013), etc.

But for matching with transfers: utility difference entirely ignores the transfers!

A naive measure of instability: utility difference

Our notion of instability: Subset Instability
Definition: The Subset Instability of a market outcome (μ, τ) is defined to be:

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Our notion of instability: Subset Instability

Maximum over
coalitions S

Definition: The Subset Instability of a market outcome (μ, τ) is defined to be:

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Our notion of instability: Subset Instability

Max utility that agents in S can
generate by themselves

Maximum over
coalitions S

Definition: The Subset Instability of a market outcome (μ, τ) is defined to be:

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Our notion of instability: Subset Instability

Max utility that agents in S can
generate by themselves

Utility that agents in S receive from the
platform

Maximum over
coalitions S

Definition: The Subset Instability of a market outcome (μ, τ) is defined to be:

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Our notion of instability: Subset Instability

Max utility that agents in S can
generate by themselves

Utility that agents in S receive from the
platform

Subset Instability = max gain that any “coalition” of agents S could obtain by deviating from
the given outcome (μ, τ) and only matching within S

Maximum over
coalitions S

Definition: The Subset Instability of a market outcome (μ, τ) is defined to be:

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Properties of Subset Instability

Subset Instability is 0 if and only if (μ, τ) is stable

Subset Instability is at least the utility difference of μ.

Subset Instability = the “minimum stabilizing subsidy”

- How much a platform has to “pay” participants for the matching to be stable

Subset Instability is Lipschitz in the utility function u for any market outcome (μ, τ) .

- Guarantees that Subset Instability is tractable for learning stable matchings

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Properties of Subset Instability

Subset Instability is 0 if and only if (μ, τ) is stable

Subset Instability is at least the utility difference of μ.

Subset Instability = the “minimum stabilizing subsidy”

- How much a platform has to “pay” participants for the matching to be stable

Subset Instability is Lipschitz in the utility function u for any market outcome (μ, τ) .

- Guarantees that Subset Instability is tractable for learning stable matchings

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Properties of Subset Instability

Subset Instability is 0 if and only if (μ, τ) is stable

Subset Instability is at least the utility difference of μ.

Subset Instability = the “minimum stabilizing subsidy”

- How much a platform has to “pay” participants for the matching to be stable

Subset Instability is Lipschitz in the utility function u for any market outcome (μ, τ) .

- Guarantees that Subset Instability is tractable for learning stable matchings

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Properties of Subset Instability

Subset Instability is 0 if and only if (μ, τ) is stable

Subset Instability is at least the utility difference of μ.

Subset Instability = the “minimum stabilizing subsidy”

- How much a platform has to “pay” participants for the matching to be stable

Subset Instability is Lipschitz in the utility function u for any market outcome (μ, τ) .

- Guarantees that Subset Instability is tractable for learning stable matchings

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Properties of Subset Instability

Subset Instability is 0 if and only if (μ, τ) is stable

Subset Instability is at least the utility difference of μ.

Subset Instability = the “minimum stabilizing subsidy”

- How much a platform has to “pay” participants for the matching to be stable

Subset Instability is Lipschitz in the utility function u for any market outcome (μ, τ) .

- Guarantees that Subset Instability is tractable for learning stable matchings

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Main algorithmic question

 Regret := Instab(μt, τt)

Minimize regret given by cumulative instability over time:

 Instab((μt, τt)) := maxS ⊆ I ∪ J (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa))

Outline for the rest of the talk

1. Background on stable matchings with transfers (Shapley,
Shubik ‘71)

2. Our framework for learning stable market outcomes

3. Designing algorithms to learn stable market outcomes

4. Extensions and Conclusion

Algorithm Design

Results: No-Regret Algorithms
Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent

regret with N agents over T rounds.

Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is

optimal up to log factors (see paper).

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent

regret with N agents over T rounds.

Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is

optimal up to log factors (see paper).

We can also achieve instance-dependent regret bounds:

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent

regret with N agents over T rounds.

Theorem 2: The same algorithm incurs Õ(N5 log(T)/Δ2) regret with N agents over T

rounds where Δ is a measure of instance-dependent gap.

Intuition for why no-regret learning is possible

We can easily adapt ExploreThenCommit to this setting.

Explore phase: obtains estimate uest of u with ||uest - u||∞ ≤ ε within Õ(N/ε2)
rounds.

Commit phase: “commit” to stable matching (μ, τ) with respect to uest
- Lipschitzness of Subset Instability implies Instab(μ, τ) ≤ Lε

This algorithm achieves regret Õ(N4/3T2/3).

Intuition for why no-regret learning is possible

We can easily adapt ExploreThenCommit to this setting.

Explore phase: obtains estimate uest of u with ||uest - u||∞ ≤ ε within Õ(N/ε2)
rounds.

Commit phase: “commit” to stable matching (μ, τ) with respect to uest
- Lipschitzness of Subset Instability implies Instab(μ, τ) ≤ Lε

This algorithm achieves regret Õ(N4/3T2/3).

Key algorithmic question: Can we achieve Õ(T1/2) regret?

An algorithmic meta-approach (MatchUCB)
Idea: adopt “optimism in the face of uncertainty” principle

(1) For each pair (i,j), keep track of confidence sets Ci,j for ui(j) and Cj,i for uj(i).
- Confidence sets should contain true utility values with high probability.

(2) At each round:

- Compute “upper confidence bound” estimates of utilities ui
UCB(j)= max Ci,j and

uj
UCB(i)=max Cj,i for all pairs (i, j).

- Compute any stable market outcome with respect to uUCB over It and Jt .

An algorithmic meta-approach (MatchUCB)
Idea: adopt “optimism in the face of uncertainty” principle

(1) For each pair (i , j), keep track of confidence sets Ci, j for ui(j) and Cj, i for uj(i).
- Confidence sets should contain true utility values with high probability.

(2) At each round:

- Compute “upper confidence bound” estimates of utilities ui
UCB(j)= max Ci,j and

uj
UCB(i)=max Cj,i for all pairs (i, j).

- Compute any stable market outcome with respect to uUCB over It and Jt .

An algorithmic meta-approach (MatchUCB)
Idea: adopt “optimism in the face of uncertainty” principle

(1) For each pair (i , j), keep track of confidence sets Ci, j for ui(j) and Cj, i for uj(i).
- Confidence sets should contain true utility values with high probability.

(2) At each round:

- Compute “upper confidence bound” estimates of utilities ui
UCB(j)= max Ci,j and

uj
UCB(i)=max Cj,i for all pairs (i, j).

- Compute any stable market outcome with respect to uUCB over It and Jt .

An algorithmic meta-approach (MatchUCB)
Idea: adopt “optimism in the face of uncertainty” principle

(1) For each pair (i , j), keep track of confidence sets Ci, j for ui(j) and Cj, i for uj(i).
- Confidence sets should contain true utility values with high probability.

(2) At each round:

- Compute “upper confidence bound” estimates

ui
UCB(j)= max Ci, j and uj

UCB(i)=max Cj, i for all pairs (i, j).

An algorithmic meta-approach (MatchUCB)
Idea: adopt “optimism in the face of uncertainty” principle

(1) For each pair (i , j), keep track of confidence sets Ci, j for ui(j) and Cj, i for uj(i).
- Confidence sets should contain true utility values with high probability.

(2) At each round:

- Compute “upper confidence bound” estimates

ui
UCB(j)= max Ci, j and uj

UCB(i)=max Cj, i for all pairs (i, j).
- Compute any stable market outcome with respect to uUCB over It and Jt .

An algorithmic meta-approach (MatchUCB)
Idea: adopt “optimism in the face of uncertainty” principle

(1) For each pair (i , j), keep track of confidence sets Ci, j for ui(j) and Cj, i for uj(i).
- Confidence sets should contain true utility values with high probability.

(2) At each round:

- Compute “upper confidence bound” estimates

ui
UCB(j)= max Ci, j and uj

UCB(i)=max Cj, i for all pairs (i, j).
- Compute any stable market outcome with respect to uUCB over It and Jt .

Key intuition behind MatchUCB
Instant-independent analysis of classical UCB boils down to:

(1) Show that regret is bounded by sum of the sizes of the confidence sets.

(2) Bound the sum of the sizes of the confidence sets.

Key intuition behind MatchUCB
Instant-independent analysis of classical UCB boils down to:

(1) Show that regret is bounded by sum of the sizes of the confidence sets.

(2) Bound the sum of the sizes of the confidence sets.

Key intuition behind MatchUCB
Instant-independent analysis of UCB boils down to:

(1) Show that regret is bounded by sum of the sizes of the confidence sets.

(2) Bound the sum of the sizes of the confidence sets.

Main lemma: Given confidence sets Ci, j and Ci, j for each pair (i, j),

let (μ, τ) be a stable outcome with respect to the upper confidence

bound estimate uUCB . Then:

Instab(μ, τ) ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|.

Proof sketch of the main lemma
Write Instab(μ, τ) as maxS ⊆ I ∪ J f(μ, τ, S, u) where:

f(μ, τ, S, u) := maxμ*{∑a ∈ S(ua(μ*(a))| μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa).

Note that:

f(μ, τ, S, u) = f(μ, τ, S, u) - f(μ, τ, S, uUCB)

 = maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - maxμ*{∑a ∈ S ua
UCB(μ*(a)) | μ* matching over

S}

 + ∑a ∈ S(ua

UCB(μ(a)) + τa) - ∑a ∈ S(ua(μ(a)) + τa)

 ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|

This also yields a bound on Instab(μ, τ) = maxS ⊆ I ∪ J f(μ, τ, S, u).

Proof sketch of the main lemma
Write Instab(μ, τ) as maxS ⊆ I ∪ J f(μ, τ, S, u) where:

f(μ, τ, S, u) := maxμ*{∑a ∈ S(ua(μ*(a))| μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa).

Note that:

f(μ, τ, S, u) = f(μ, τ, S, u) - f(μ, τ, S, uUCB)

 = maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - maxμ*{∑a ∈ S ua
UCB(μ*(a)) | μ* matching over

S}

 + ∑a ∈ S(ua

UCB(μ(a)) + τa) - ∑a ∈ S(ua(μ(a)) + τa)

 ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|

This also yields a bound on Instab(μ, τ) = maxS ⊆ I ∪ J f(μ, τ, S, u).

Proof sketch of the main lemma
Write Instab(μ, τ) as maxS ⊆ I ∪ J f(μ, τ, S, u) where:

f(μ, τ, S, u) := maxμ*{∑a ∈ S(ua(μ*(a))| μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa).

Note that:

f(μ, τ, S, u) = f(μ, τ, S, u) - f(μ, τ, S, uUCB)

 = maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - maxμ*{∑a ∈ S ua
UCB(μ*(a)) | μ* matching over S}

 + ∑a ∈ S(ua

UCB(μ(a)) + τa) - ∑a ∈ S(ua(μ(a)) + τa)

 ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|

This also yields a bound on Instab(μ, τ) = maxS ⊆ I ∪ J f(μ, τ, S, u).

Proof sketch of the main lemma
Write Instab(μ, τ) as maxS ⊆ I ∪ J f(μ, τ, S, u) where:

f(μ, τ, S, u) := maxμ*{∑a ∈ S(ua(μ*(a))| μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa).

Note that:

f(μ, τ, S, u) = f(μ, τ, S, u) - f(μ, τ, S, uUCB)

 = maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - maxμ*{∑a ∈ S ua
UCB(μ*(a)) | μ* matching over S}

 + ∑a ∈ S(ua

UCB(μ(a)) + τa) - ∑a ∈ S(ua(μ(a)) + τa)

 ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|

This also yields a bound on Instab(μ, τ) = maxS ⊆ I ∪ J f(μ, τ, S, u).

This is nonpositive.

Proof sketch of the main lemma
Write Instab(μ, τ) as maxS ⊆ I ∪ J f(μ, τ, S, u) where:

f(μ, τ, S, u) := maxμ*{∑a ∈ S(ua(μ*(a))| μ* matching over S} - ∑a ∈ S(ua(μ(a)) + τa).

Note that:

f(μ, τ, S, u) = f(μ, τ, S, u) - f(μ, τ, S, uUCB)

 = maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} - maxμ*{∑a ∈ S ua
UCB(μ*(a)) | μ* matching over S}

 + ∑a ∈ S(ua

UCB(μ(a)) + τa) - ∑a ∈ S(ua(μ(a)) + τa)

 ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|

This also yields a bound on Instab(μ, τ) = maxS ⊆ I ∪ J f(μ, τ, S, u).

This is nonpositive.

Bounded by confidence set size

Key intuition behind MatchUCB
Instant-independent analysis of UCB boils down to:

(1) Show that regret is bounded by sum of the sizes of the confidence sets.

(2) Bound the sum of the sizes of the confidence sets.

Main lemma: Given confidence sets Ci, j and Ci, j for each pair (i, j),

let (μ, τ) be a stable outcome with respect to the upper confidence

bound estimate uUCB . Then:

Instab(μ, τ) ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|.

Key intuition behind MatchUCB
Instant-independent analysis of UCB boils down to:

(1) Show that regret is bounded by sum of the sizes of the confidence sets.

(2) Bound the sum of the sizes of the confidence sets [use classical approach]

Main lemma: Given confidence sets Ci, j and Ci, j for each pair (i, j),

let (μ, τ) be a stable outcome with respect to the upper confidence

bound estimate uUCB . Then:

Instab(μ, τ) ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|.

Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is

optimal up to log factors.

We can also achieve instance-dependent regret bounds:

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent

regret with N agents over T rounds.

Theorem 2: The same algorithm incurs Õ(N5 log(T)/Δ2) regret with N agents over T

rounds where Δ is a measure of instance-dependent gap.

Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is

optimal up to log factors.

We can also achieve instance-dependent regret bounds:

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent

regret with N agents over T rounds.

Theorem 2: The same algorithm incurs Õ(N5 log(T)/Δ2) regret with N agents over T

rounds where Δ is a measure of instance-dependent gap.

Proof ideas for instance-dependent regret

High-level approach: count the number of “mistakes” that the algorithm makes.

Challenge: mistakes arise if the matching is correct but the transfers are wrong.

Obtaining the “right” transfers requires more structure than in MatchUCB.

We need to choose a specific stable market outcome for UCB preferences
- Leverage the primal-dual formulation of stable matchings (Shapley and Shubik, 1971).

- Leave slack in constraints to find a “robust” dual solution (and “robust” transfers).

Proof ideas for instance-dependent regret

High-level approach: count the number of “mistakes” that the algorithm makes.

Challenge: mistakes arise if the matching is correct but the transfers are wrong.

Obtaining the “right” transfers requires more structure than in MatchUCB.

We need to choose a specific stable market outcome for UCB preferences
- Leverage the primal-dual formulation of stable matchings (Shapley and Shubik, 1971).

- Leave slack in constraints to find a “robust” dual solution (and “robust” transfers).

Proof ideas for instance-dependent regret

High-level approach: count the number of “mistakes” that the algorithm makes.

Challenge: mistakes arise if the matching is correct but the transfers are wrong.

Obtaining the “right” transfers requires more structure than in MatchUCB.

We need to choose a specific stable market outcome for UCB preferences
- Leverage the primal-dual formulation of stable matchings (Shapley and Shubik, 1971).

- Leave slack in constraints to find a “robust” dual solution (and “robust” transfers).

An algorithmic meta-approach (MatchUCB)
Idea: adopt “optimism in the face of uncertainty” principle

(1) For each pair (i,j), keep track of confidence sets Ci, j for ui(j) and Cj, i for uj(i).
- Confidence sets should contain true utility values with high probability.

(2) At each round:

- Compute “upper confidence bound” estimates

ui
UCB(j)= max Ci, j and uj

UCB(i)=max Cj, i for all pairs (i, j).
- Compute any stable market outcome with respect to uUCB over It and Jt .

Proof ideas for instance-dependent regret

High-level approach: count the number of “mistakes” that the algorithm makes.

Challenge: mistakes arise if the matching is correct but the transfers are wrong.

Obtaining the “right” transfers requires more structure than in MatchUCB.

We need to choose a specific stable market outcome for UCB preferences
- Leverage the primal-dual formulation of stable matchings (Shapley and Shubik, 1971).

- Leave slack in constraints to find a “robust” dual solution (and “robust” transfers).

Proof ideas for instance-dependent regret

High-level approach: count the number of “mistakes” that the algorithm makes.

Challenge: mistakes arise if the matching is correct but the transfers are wrong.

Obtaining the “right” transfers requires more structure than in MatchUCB.

We need to choose a specific stable market outcome for UCB preferences
- Leverage the primal-dual formulation of stable matchings (Shapley and Shubik, 1971).

- Leave slack in constraints to find a “robust” dual solution (and “robust” transfers).

Proof ideas for instance-dependent regret

High-level approach: count the number of “mistakes” that the algorithm makes.

Challenge: mistakes arise if the matching is correct but the transfers are wrong.

Obtaining the “right” transfers requires more structure than in MatchUCB.

We need to choose a specific stable market outcome for UCB preferences
- Leverage the primal-dual formulation of stable matchings (Shapley and Shubik, 1971).

- Leave slack in constraints to find a “robust” dual solution (and “robust” transfers).

Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is

optimal up to log factors (see paper).

We can also achieve instance-dependent regret bounds:

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent

regret with N agents over T rounds.

Theorem 2: The same algorithm incurs Õ(N5 log(T)/Δ2) regret with N agents over T

rounds where Δ is a measure of instance-dependent gap.

Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is

optimal up to log factors (see paper).

We can also achieve instance-dependent regret bounds:

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent

regret with N agents over T rounds.

Theorem 2: The same algorithm incurs Õ(N5 log(T)/Δ2) regret with N agents over T

rounds where Δ is a measure of instance-dependent gap.

What about the dependence on N?

Results: Preference Structure
For arbitrary preferences, regret grows super-linearly in the size N of the market…

When can we do better (i.e., obtain ∝ N regret)?

Results: Preference Structure
For arbitrary preferences, regret grows super-linearly in the size N of the market…

When can we do better (i.e., obtain ∝ N regret)?

Consider two models of preference structure:

1. Typed preferences: each agent belongs to one of finitely many types; all agents

of the same type have the same preferences
○ Can implement MatchUCB with confidence bounds that account for “delayed” feedback

Results: Preference Structure
For arbitrary preferences, regret grows super-linearly in the size N of the market…

When can we do better (i.e., obtain ∝ N regret)?

Consider two models of preference structure:

1. Typed preferences: each agent belongs to one of finitely many types; all agents

of the same type have the same preferences
○ Can implement MatchUCB with confidence bounds that account for “delayed” feedback

2. Linear preferences: each agent’s utilities are a linear function of the opposite

side’s context
○ Can implement with MatchUCB with confidence bounds based on LinUCB

Regret bounds for different preference structures

Unstructured preferences Õ(N n1/2T1/2)

Typed preferences Õ(|C|n1/2T1/2)

Linear preferences Õ(d N1/2n1/2T1/2)

N =# of agents on platform; n = # of agents who arrive each round;
C is set of types; d is preference dimension

Outline for the rest of the talk

1. Background on stable matchings with transfers (Shapley,
Shubik ‘71)

2. Our framework for learning stable market outcomes

3. Designing algorithms to learn stable market outcomes

4. Extensions and Conclusion

Extensions and Conclusion

Extension 1: Connection to Platform Profit
We interpret learning objective as platform profit.

Idea: use the interpretation of Subset Instability as “minimum stabilizing subsidies”

- Min amount the platforms needs to pay agents to make stable

- We envision that this is the “cost” of the platform to retaining agents.

We introduce “search frictions” (agents have to pay a cost to find alternate

matchings).

Takeaway: the platform can earn a profit in the long-run.

Extension 2: Matching without Transfers
We extend our framework to matching without transfers (Gale, Shapley ‘62).

We propose a measure of instability based on the “minimum stability subsidies”.

- Equals 0 for any stable matching

- Has significant advantages over “utility difference” considered in prior work

(e.g., Das, Kamenica (IJCAI ‘05), Liu, Mania, Jordan (AISTATS ‘20)).

We show a variant of MatchUCB yields Õ(N 3/2T1/2) regret in this setting.

Takeaway: our framework & algorithms apply to matchings without transfers

Summary of our contributions
We presented an incentive-aware framework for learning stable matchings that

builds on the bandits literature.

(1) We proposed Subset Instability as a learning objective for the platform.

(2) We constructed an algorithmic meta-approach based on UCB, and we achieved

instance-independent and instance-dependent regret bounds.

(3) We applied this algorithm principle to different preference structures.

(4) We also connected our results to platform profit and investigated matchings

without transfers.

How can equilibria be efficiently learned?
Our core insight: in a stochastic setting, UCB-based algorithms can be adapted to learn stable matchings.

General question: In what other settings (and with what other algorithms) can equilibria be learned?

Direction 1: Learn stable matchings in more general environments

- Setting where utilities can dynamically change? (e.g. (Min, Wang, Xu, Wang, Jordan, Yang, 2022))

- Adversarial settings?
- A platform objective that captures other aspects of the marketplace (e.g. competing platforms)?

Direction 2: Learning equilibria in more general matching markets or market settings

- Learning competitive equilibria? (e.g. (Gu, Kandaswamy, Jordan, 2021), (Liu, Lu, Wang, Jordan, Yang, 2022))

- Learning equilibria in many-to-many matching markets?

