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Data-Driven Matching Platforms

There are two “sides” of the marketplace:
- Think of one side as customers (riders) and the other side as providers (drivers). 

Both sides have preferences over each other. 
- E.g., a driver may prefer certain types of routes; a rider may prefer drivers who are closer

The platform recommends matchings (and suggests $ transfers) between participants. 
- E.g. Uber suggests a match between a driver and a rider along with a $ transfer 

Data-driven nature of recommendations:
- Learn preferences from past data
- Make decisions under uncertainty when recommending a matching between participants   
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Our contribution: incentive-aware learning framework for matching markets
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Matching + Learning: Challenges

Platform wants to align market outcomes with agent preferences 
- To keep agents, must offer desirable matches at fair prices

But agent preferences are unknown… 

Approach: learn agent preferences from repeated feedback!
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Existing Approaches

Classical economic theory:

● Focuses on known agent 

preferences

● Deferred acceptance etc. finds 

stable outcomes given fixed 

preferences

Classical multi-armed bandits:

● Combinatorial bandits maximizes 

total welfare of the matching, an 

incentive-unaware objective

learning and exploration?

incentive-awareness?

preference structures?

How should stable market outcomes be learned?
And what structures make efficient learning possible?

uncertainty about preferences?

 This work: Brings together market design + multi-armed bandits to 
answer these questions



Our Contribution
I. Framework
● Develop bandit framework for learning stable outcomes in matching markets
● Introduce Subset Instability as an learning objective

II. Algorithm Design
● Design no-regret algorithms for learning stable market outcomes
● Give examples of how preference structure impacts regret

III. Extensions
● Interpret learning objective as platform profit 
● Extend framework and algorithms to matching without transfers 
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Stability captures the alignment of a market outcome with preferences. 

Definition (Shapley, Shubik, 1971): A market outcome (μ, τ) is stable if (1) there are 

no blocking pairs and (2) it satisfies individually rationality. 

No blocking pairs: no pair (i, j) would prefer each other over (μ, τ). That is:  

for all (i, j) : ui(j) + uj(i)  ≤  (ui(μ(i)) + τi) + (uj(μ(j)) + τj).

Individual rationality: no agent would prefer to quit the platform. That is, 

for all a : ua(μ(a)) + τa ≥ 0.



Example of a stable market outcome 

No blocking pairs: ui(j) + uj(i)  ≤  (ui(μ(i)) + τi) + (uj(μ(j)) + τj) for all pairs (i, j)

Individual rationality: ua(μ(a)) + τa ≥ 0 for every agent a

No blocking pairs: 12 + (-10) < (9 - 6)

Individual rationality: 9 - 6 > 0 and -5 + 6 > 0
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maximizes total utility 
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infinitely many transfers τ for which  (μ, τ) is a stable market outcome. 

3. Linear program formulation: Stability can be formulated as an LP with primal 
variables are matchings μ and the dual variables are related to transfers τ.
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Example of a stable market outcome 

No blocking pairs: ui(j) + uj(i)  ≤  (ui(μ(i)) + τi) + (uj(μ(j)) + τj) for all pairs (i, j)

Individual rationality: ua(μ(a)) + τa ≥ 0 for every agent a

No blocking pairs: 12 + (-10) < (9 - 6)

Individual rationality: 9 - 6 > 0 and -5 + 6 > 0

Note that:

1. (C, P) is a maximum matching

2. (C, P) with “pay 7” is also stable. 
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Learning takes place over T rounds. In the t-th round:

● Agents It ⊆ I, Jt ⊆ J arrive to the market.

● Platform selects a market outcome: a matching with transfers (μt, τt)

● Platform observes bandit feedback: noisy utilities ua(μ
t(a)) + ε for each agent a

● The platform incurs loss given by instability Instab(μt, τt) of the selected outcome.
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Learning takes place over T rounds. In the t-th round:

● Agents It ⊆ I, Jt ⊆ J arrive to the market.

● Platform selects a market outcome: a matching with transfers (μt, τt)

● Platform observes bandit feedback: noisy utilities ua(μ
t(a)) + ε for each agent a

● The platform incurs loss given by instability Instab(μt, τt) of the selected outcome.

Regret = the cumulative loss over time

Learning and Feedback Model

                   Instab(μt, τt) 



Why do we need an instability measure? 
Stability is a binary notion, but we need a continuous notion.  

- With uncertainty, impossible to guarantee exact stability.

Goal: design a measure of “distance from stability” that is: 

(1) tractable for learning, and 

(2) economically meaningful. 



A naive measure of quality: total utility ∑ ua(μ(a)) = ∑ ua(μ(a)) + τa  across agents 

Utility difference = difference in utility achieved by μ and max possible utility 

 max {∑ ua(μ*(a)) | μ* is a matching over agents} -  ∑ ua(μ(a))

Utility difference is the standard loss function in combinatorial bandits: 

e.g. (Cesa-Bianchi, Lugosi, 2012), (Gai, Krishnamachari, Jain, 2012), (Chen, Wang, Yuan, 2013), etc.
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Our notion of instability: Subset Instability

Max utility that agents in S can 
generate by themselves

Utility that agents in S receive from the 
platform

Subset Instability = max gain that any “coalition” of agents S could obtain by deviating from 
the given outcome (μ, τ) and only matching within S

Maximum over 
coalitions S

Definition: The Subset Instability of a market outcome (μ, τ) is defined to be: 

    Instab((μt, τt)) := maxS ⊆ I ∪ J  (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} -  ∑a ∈ S( ua(μ(a)) + τa)) 



Properties of Subset Instability

Subset Instability is 0 if and only if (μ, τ) is stable

Subset Instability is at least the utility difference of μ. 

Subset Instability = the “minimum stabilizing subsidy”

- How much a platform has to “pay” participants for the matching to be stable

Subset Instability is Lipschitz in the utility function u for any market outcome (μ, τ) . 

- Guarantees that Subset Instability is tractable for learning stable matchings
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Main algorithmic question

 Regret :=                  Instab(μt, τt) 

Minimize regret given by cumulative instability over time: 

    Instab((μt, τt)) := maxS ⊆ I ∪ J  (maxμ*{∑a ∈ S ua(μ*(a)) | μ* matching over S} -  ∑a ∈ S( ua(μ(a)) + τa)) 
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Results: No-Regret Algorithms
Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent 

regret with N agents over T rounds.
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Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is 

optimal up to log factors (see paper).  

We can also achieve instance-dependent regret bounds:

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent 

regret with N agents over T rounds.

Theorem 2: The same algorithm incurs Õ(N5 log(T)/Δ2) regret with N agents over T 

rounds where Δ is a measure of instance-dependent gap. 



Intuition for why no-regret learning is possible

We can easily adapt ExploreThenCommit to this setting.

Explore phase: obtains estimate uest of u with ||uest - u||∞ ≤ ε within Õ(N/ε2) 
rounds. 

Commit phase: “commit” to stable matching (μ, τ) with respect to uest 
- Lipschitzness of Subset Instability implies Instab(μ, τ) ≤ Lε

This algorithm achieves regret Õ(N4/3T2/3). 



Intuition for why no-regret learning is possible

We can easily adapt ExploreThenCommit to this setting.

Explore phase: obtains estimate uest of u with ||uest - u||∞ ≤ ε within Õ(N/ε2) 
rounds. 

Commit phase: “commit” to stable matching (μ, τ) with respect to uest 
- Lipschitzness of Subset Instability implies Instab(μ, τ) ≤ Lε

This algorithm achieves regret Õ(N4/3T2/3). 

Key algorithmic question: Can we achieve Õ(T1/2) regret? 



An algorithmic meta-approach (MatchUCB)
Idea: adopt “optimism in the face of uncertainty” principle

(1) For each pair (i,j), keep track of confidence sets Ci,j for ui(j) and Cj,i for  uj(i). 
- Confidence sets should contain true utility values with high probability. 

(2) At each round:

- Compute “upper confidence bound” estimates of utilities ui
UCB(j)= max Ci,j and 

uj
UCB(i)=max Cj,i for all pairs (i, j).

- Compute any stable market outcome with respect to uUCB  over It and Jt .
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Bounded by confidence set size
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Key intuition behind MatchUCB
Instant-independent analysis of UCB boils down to:

(1) Show that regret is bounded by sum of the sizes of the confidence sets.

(2) Bound the sum of the sizes of the confidence sets [use classical approach] 

Main lemma: Given confidence sets Ci, j and Ci, j for each pair (i, j), 

let (μ, τ) be a stable outcome with respect to the upper confidence 

bound estimate uUCB . Then:

Instab(μ, τ) ≤ ∑(i, j)∈μ|max Ci, j - min Ci, j|.



Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is 

optimal up to log factors.  

We can also achieve instance-dependent regret bounds:

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent 

regret with N agents over T rounds.

Theorem 2: The same algorithm incurs Õ(N5 log(T)/Δ2) regret with N agents over T 

rounds where Δ is a measure of instance-dependent gap. 



Results: No-Regret Algorithms

We further show that the instance-independent regret bound in Theorem 1 is 

optimal up to log factors.  

We can also achieve instance-dependent regret bounds:

Theorem 1: There exists an algorithm incurring Õ(N3/2T1/2) instance-independent 

regret with N agents over T rounds.

Theorem 2: The same algorithm incurs Õ(N5 log(T)/Δ2) regret with N agents over T 

rounds where Δ is a measure of instance-dependent gap. 



Proof ideas for instance-dependent regret

High-level approach: count the number of “mistakes” that the algorithm makes.  
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Obtaining the “right” transfers requires more structure than in MatchUCB.

We need to choose a specific stable market outcome for UCB preferences 
- Leverage the primal-dual formulation of stable matchings (Shapley and Shubik, 1971).  

- Leave slack in constraints to find a “robust” dual solution (and “robust” transfers). 
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What about the dependence on N?
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Results: Preference Structure
For arbitrary preferences, regret grows super-linearly in the size N of the market… 

When can we do better (i.e., obtain ∝ N regret)?

Consider two models of preference structure:

1. Typed preferences: each agent belongs to one of finitely many types; all agents 

of the same type have the same preferences
○ Can implement MatchUCB with confidence bounds that account for “delayed” feedback

2. Linear preferences: each agent’s utilities are a linear function of the opposite 

side’s context
○ Can implement with MatchUCB with confidence bounds based on LinUCB



Regret bounds for different preference structures

Unstructured preferences                              Õ(N n1/2T1/2)

Typed preferences                                              Õ(|C|n1/2T1/2)

Linear preferences                                          Õ(d N1/2n1/2T1/2)

N =# of agents on platform; n = # of agents who arrive each round; 
C is set of types; d is preference dimension



Outline for the rest of the talk

1. Background on stable matchings with transfers (Shapley, 
Shubik ‘71)

2. Our framework for learning stable market outcomes 

3. Designing algorithms to learn stable market outcomes

4. Extensions and Conclusion



Extensions and Conclusion

 



Extension 1: Connection to Platform Profit 
We interpret learning objective as platform profit.

Idea: use the interpretation of Subset Instability as “minimum stabilizing subsidies”

- Min amount the platforms needs to pay agents to make stable

- We envision that this is the “cost” of the platform to retaining agents.    

We introduce “search frictions” (agents have to pay a cost to find alternate 

matchings).

Takeaway: the platform can earn a profit in the long-run.



Extension 2: Matching without Transfers
We extend our framework to matching without transfers (Gale, Shapley ‘62).

We propose a measure of instability based on the “minimum stability subsidies”.

- Equals 0 for any stable matching 

- Has significant advantages over “utility difference” considered in prior work 

(e.g., Das, Kamenica (IJCAI ‘05),  Liu, Mania, Jordan (AISTATS ‘20)).

We show a variant of MatchUCB yields  Õ(N 3/2T1/2) regret in this setting. 

Takeaway: our framework & algorithms apply to matchings without transfers

  



Summary of our contributions
We presented an incentive-aware framework for learning stable matchings that 

builds on the bandits literature.

(1) We proposed Subset Instability as a learning objective for the platform. 

(2) We constructed an algorithmic meta-approach based on UCB, and we achieved 

instance-independent and instance-dependent regret bounds.  

(3) We applied this algorithm principle to different preference structures.

(4) We also connected our results to platform profit and investigated matchings 

without transfers. 



How can equilibria be efficiently learned? 
Our core insight: in a stochastic setting, UCB-based algorithms can be adapted to learn stable matchings.

General question: In what other settings (and with what other algorithms) can equilibria be learned?

Direction 1: Learn stable matchings in more general environments 

- Setting where utilities can dynamically change? (e.g. (Min, Wang, Xu, Wang, Jordan, Yang, 2022))

- Adversarial settings? 
- A platform objective that captures other aspects of the marketplace (e.g. competing platforms)?  

Direction 2: Learning equilibria in more general matching markets or market settings 

- Learning competitive equilibria? (e.g. (Gu, Kandaswamy, Jordan, 2021), (Liu, Lu, Wang, Jordan, Yang, 2022))

- Learning equilibria in many-to-many matching markets?


