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The ℓ₂ norm of the network weights is a parameter space view. 

But how should this be interpreted in function space?

Induced regularizer = the minimum norm of weights needed to realize a function 

using a given network architecture or model class                        

Function on input space

Model class



Induced Regularizer is Highly Architecture Dependent

Fully connected networks:  ℓ₂ norm of the linear predictor (Gunasekar et al., 2018)
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Diagonal networks with L layers: ℓ
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 norm of the linear predictor (Gunasekar et al., 2018)

Linear convolutional networks with full-dimensional kernels: ℓ₁ norm of the predictor in 
Fourier space (Gunasekar et al., 2018, Pilanci and Ergen ‘20, Yun et al. ‘21)

Infinite-width two-layer ReLU networks:  ℓ₁ norm of the partial derivatives of the Radon 
transform of the function (Savarese et al. ‘19, Pilanci and Ergen ‘20) 

Our focus: multi-channel linear convolutional networks with arbitrary kernel size 
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Main Theorem

Theorem: For networks with single-channel inputs, the induced regularizer
                 is independent of the number of output channels C for any kernel size K. 

Proof sketch:
- Need to analyze            R   implicitly since it does not appear to have a simple closed-form                .
- Key technical tool: We express                   as a semidefinite program with a rank <= C constraint.
- Tightness of SDP relaxation ⇔ independence of the induced regularizer to C.
- Main part of proof: showing tightness of the SDP relaxation 



Induced Regularizer Definition for CNNs

First-layer 
weights  

Second layer 
weights  

Linear predictor

Fourier space 
representation of 
requirement that 
network is equivalent 
to desired predictor 
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Proof of SDP tightness

Suffices to show that there exists a rank 1 solution

Boils down to a natural fact about convolutions

To show this fact, we leverage the polynomial representation of convolutions to show that it 
suffices to construct a polynomial  pc  satisfying the following identity:  



Extensions

We extend our results to networks with multi-channel inputs.
- No longer get independence for any C ≥ 1
- We show                    is independent of C as long as  C ≥ R * K.

Conjecture:                    is independent of C as long as  C ≥ R.

We empirically connect our results to the implicit regularization of gradient descent.
- Asymptotic behavior on 2-layer  linear CNNs appears to be invariant for  C ≥ R on MNIST and CIFAR-10



Conclusion and Future Work

We studied the induced bias of the ℓ₂ norm of the weights for two-layer linear CNNs. 

We showed that for single-channel inputs, the induced regularizer  is independent of the number of 
output channels regardless of the kernel size. 

We partially generalized this to multi-channel inputs and empirically connected it to the implicit 
regularization of gradient descent. 

Future work: 
- Prove conjecture for multi-channel inputs
- Study the role of other architectural features (e.g. pooling, depth, nonlinearities, etc.) 


