Inductive Bias of Multi-Channel Linear Convolutional Networks with Bounded Weight Norm

Meena Jagadeesan (UC Berkeley)

Joint work w/ Ilya Razenshteyn (CipherMode Labs) & Suriya Gunasekar (MSR)

The Weight Norm of a Network

"The size [magnitude] of the weights is more important than the size [number of parameters] of the network." (Bartlett, '97)

The Weight Norm of a Network

"The size [magnitude] of the weights is more important than the size [number of parameters] of the network." (Bartlett, '97)

The *l*² norm of the weights is "controlled" during training:

- Implicit regularization of gradient descent (e.g. Nacson et al.
 '19, Lyu and Li '20, etc.)
- Explicit regularization (e.g. weight decay, etc.)

The Weight Norm of a Network

"The size [magnitude] of the weights is more important than the size [number of parameters] of the network." (Bartlett, '97)

The *l*² norm of the weights is "controlled" during training:

- Implicit regularization of gradient descent (e.g. Nacson et al.
 '19, Lyu and Li '20, etc.)
- Explicit regularization (e.g. weight decay, etc.)

How does controlling the l_2 norm affect which functions are learned?

The l_2 norm of the network weights is a parameter space view.

The l_2 norm of the network weights is a parameter space view.

But how should this be interpreted in function space?

The l_2 norm of the network weights is a parameter space view.

But how should this be interpreted in function space?

Induced regularizer = the minimum norm of weights needed to realize a function using a given network architecture or model class

The l_2 norm of the network weights is a parameter space view.

But how should this be interpreted in function space?

Induced regularizer = the minimum norm of weights needed to realize a function using a given network architecture or model class

$$\mathcal{R}_{\Phi}(f) := \inf_{oldsymbol{ heta}} \|oldsymbol{ heta}\|_2^2 ext{ s.t., } orall \mathsf{x}, f(\mathsf{x}) = \Phi(oldsymbol{ heta};\mathsf{x})$$

The l_2 norm of the network weights is a parameter space view.

But how should this be interpreted in function space?

Induced regularizer = the minimum norm of weights needed to realize a function using a given network architecture or model class

Model class

$$\mathcal{R}_{\Phi}(f) := \inf_{\boldsymbol{\theta}} \|\boldsymbol{\theta}\|_2^2 \text{ s.t., } \forall \mathsf{x}, f(\mathsf{x}) = \Phi(\boldsymbol{\theta};\mathsf{x})$$

Function on input space

Induced Regularizer is Highly Architecture Dependent $\mathcal{R}_{\Phi}(f) := \inf_{\theta} \|\theta\|_2^2 \text{ s.t., } \forall x, f(x) = \Phi(\theta; x)$

Fully connected networks: *l*² norm of the linear predictor (Gunasekar et al., 2018)

<u>Diagonal networks with L layers</u>: $l_{2/1}$ norm of the linear predictor (Gunasekar et al., 2018)

Linear convolutional networks with full-dimensional kernels: l_1 norm of the predictor in Fourier space (Gunasekar et al., 2018, Pilanci and Ergen '20, Yun et al. '21)

Infinite-width two-layer ReLU networks: l_1 norm of the partial derivatives of the Radon transform of the function (Savarese et al. '19, Pilanci and Ergen '20)

Induced Regularizer is Highly Architecture Dependent $\mathcal{R}_{\Phi}(f) := \inf_{\theta} \|\theta\|_2^2 \text{ s.t., } \forall x, f(x) = \Phi(\theta; x)$

Fully connected networks: l2 norm of the linear predictor (Gunasekar et al., 2018)

<u>Diagonal networks with L layers</u>: $l_{2/L}$ norm of the linear predictor (Gunasekar et al., 2018)

Linear convolutional networks with full-dimensional kernels: l_1 norm of the predictor in Fourier space (Gunasekar et al., 2018, Pilanci and Ergen '20, Yun et al. '21)

<u>Infinite-width two-layer ReLU networks</u>: *l*₁ norm of the partial derivatives of the Radon transform of the function (Savarese et al. '19, Pilanci and Ergen '20)

Our focus: multi-channel linear convolutional networks with arbitrary kernel size

2-Layer Linear Convolutional Neural Networks

Induced Regularizer for 2-Layer Linear CNNs

This talk: we focus on single-channel inputs (see the paper for treatment of general R).

Observations:

- All linear functions can be represented regardless of C and K.
- Adding more channels (weakly) decreases $\mathcal{R}_{\Phi}(f)$
- Increasing the kernel size (weakly) decreases $\mathcal{R}_{\Phi}(f)$

Induced Regularizer for 2-Layer Linear CNNs

This talk: we focus on single-channel inputs (see the paper for treatment of general R).

Observations:

- All linear functions can be represented regardless of C and K.
- Adding more channels (weakly) decreases $\mathcal{R}_{\Phi}(f)$
- Increasing the kernel size (weakly) decreases $\mathcal{R}_{\Phi}(f)$

Induced regularizer in special cases:

- K = 1, any C: ℓ_2 norm of the linear predictor
- K = D, any C: l_1 norm of the linear predictor in Fourier space.
- Appears to be no clean closed-form expression even for K = 2.

Induced Regularizer for 2-Layer Linear CNNs

This talk: we focus on single-channel inputs (see the paper for treatment of general P)

Main Result: $\mathcal{R}_{\Phi}(f)$ is **independent** of C for any kernel size K.

Observations:

- All linear functions can be represented regardless of C and K.
- Adding more channels (weakly) decreases $\mathcal{R}_{\Phi}(f)$
- Increasing the kernel size (weakly) decreases $\mathcal{R}_{\Phi}(f)$

Induced regularizer in special cases:

- K = 1, any C: ℓ_2 norm of the linear predictor
- K = D, any C: l_1 norm of the linear predictor in Fourier space.
- Appears to be no clean closed-form expression even for K = 2.

Theorem: For networks with single-channel inputs, the induced regularizer $\mathcal{R}_{\Phi}(f)$ is **independent of the number of output channels C for any kernel size K.**

Theorem: For networks with single-channel inputs, the induced regularizer $\mathcal{R}_{\Phi}(f)$ is **independent of the number of output channels C for any kernel size K.**

Proof sketch:

- Need to analyze $\mathcal{R}_{\Phi}(f)$ implicitly since it does not appear to have a simple closed-form

Theorem: For networks with single-channel inputs, the induced regularizer $\mathcal{R}_{\Phi}(f)$ is **independent of the number of output channels C for any kernel size K.**

Proof sketch:

- Need to analyze $\mathcal{R}_{\Phi}(f)$ implicitly since it does not appear to have a simple closed-form
- Key technical tool: We express $\mathcal{R}_{\Phi}(f)$ as a semidefinite program with a rank <= C constraint.

Theorem: For networks with single-channel inputs, the induced regularizer $\mathcal{R}_{\Phi}(f)$ is **independent of the number of output channels C for any kernel size K.**

Proof sketch:

- Need to analyze $\mathcal{R}_{\Phi}(f)$ implicitly since it does not appear to have a simple closed-form
- Key technical tool: We express $\mathcal{R}_{\Phi}(f)$ as a semidefinite program with a rank <= C constraint.
- Tightness of SDP relaxation ⇔ independence of the induced regularizer to C.

Theorem: For networks with single-channel inputs, the induced regularizer $\mathcal{R}_{\Phi}(f)$ is **independent of the number of output channels C for any kernel size K.**

Proof sketch:

- Need to analyze $\mathcal{R}_{\Phi}(f)$ implicitly since it does not appear to have a simple closed-form
- Key technical tool: We express $\mathcal{R}_{\Phi}(f)$ as a semidefinite program with a rank <= C constraint.
- Tightness of SDP relaxation ⇔ independence of the induced regularizer to C.
- Main part of proof: showing tightness of the SDP relaxation

Induced Regularizer Definition for CNNs

network is equivalent to desired predictor

Induced Regularizer as a Semidefinite Program $\mathcal{R}_{K,C}(\mathbf{w}) = \min_{\mathbf{U} \in \mathbb{R}^{K \times C}, \mathbf{V} \in \mathbb{R}^{D \times C}} \|\mathbf{U}\|^2 + \|\mathbf{V}\|^2 \quad \text{s.t.}, \quad \operatorname{diag}(\widehat{\mathbf{U}}\widehat{\mathbf{V}}^{\top}) = \widehat{\mathbf{w}}.$

Induced Regularizer as a Semidefinite Program

$$\mathcal{R}_{K,C}(\mathbf{w}) = \min_{\mathbf{U} \in \mathbb{R}^{K \times C}, \mathbf{V} \in \mathbb{R}^{D \times C}} \|\mathbf{U}\|^{2} + \|\mathbf{V}\|^{2} \quad \text{s.t.}, \quad \operatorname{diag}(\widehat{\mathbf{U}}\widehat{\mathbf{V}}^{\top}) = \widehat{\mathbf{w}}.$$
Requirement that network corresponds to desired predicto
$$\mathcal{R}_{K,C}(\mathbf{w}) = \min_{\mathbf{Z} \succeq 0} \langle \mathbf{Z}, \mathbf{I} \rangle \quad \text{s.t.}, \quad \forall_{d \in [D]}, \langle \mathbf{Z}, \mathbf{A}_{d}^{\text{real}} \rangle = 2 \operatorname{Re}(\widehat{\mathbf{w}}[d])$$

$$\forall_{d \in [D]}, \langle \mathbf{Z}, \mathbf{A}_{d}^{\text{img}} \rangle = 2 \operatorname{Im}(\widehat{\mathbf{w}}[d])$$

$$\operatorname{rank}(\mathbf{Z}) \leq C.$$

$$\begin{bmatrix} \mathbf{U}\mathbf{U}^{\top} & \mathbf{U}\mathbf{V}^{\top} \\ \mathbf{V}\mathbf{U}^{\top} & \mathbf{V}\mathbf{V}^{\top} \end{bmatrix}$$
Number of output channels induces a rank constraint

Induced Regularizer as a Semidefinite Program

$$\mathcal{R}_{K,C}(\mathbf{w}) = \min_{\mathbf{U} \in \mathbb{R}^{K \times C}, \mathbf{V} \in \mathbb{R}^{D \times C}} \|\mathbf{U}\|^{2} + \|\mathbf{V}\|^{2} \quad \text{s.t.}, \quad \operatorname{diag}(\widehat{\mathbf{U}}\widehat{\mathbf{V}}^{\top}) = \widehat{\mathbf{w}}.$$
Requirement that network corresponds to desired predictor
$$\mathcal{R}_{K,C}(\mathbf{w}) = \min_{\mathbf{Z} \succeq 0} \langle \mathbf{Z}, \mathbf{I} \rangle \quad \text{s.t.}, \quad \forall_{d \in [D]}, \langle \mathbf{Z}, \mathbf{A}_{d}^{\text{real}} \rangle = 2 \operatorname{Re}(\widehat{\mathbf{w}}[d])$$

$$\forall_{d \in [D]}, \langle \mathbf{Z}, \mathbf{A}_{d}^{\text{img}} \rangle = 2 \operatorname{Im}(\widehat{\mathbf{w}}[d])$$

$$\forall_{d \in [D]}, \langle \mathbf{Z}, \mathbf{A}_{d}^{\text{img}} \rangle = 2 \operatorname{Im}(\widehat{\mathbf{w}}[d])$$

$$\operatorname{Teark}(\mathbf{Z}) \leq C.$$

$$\begin{bmatrix} \mathbf{U}\mathbf{U}^{\top} \quad \mathbf{U}\mathbf{V}^{\top} \\ \mathbf{V}\mathbf{U}^{\top} \quad \mathbf{V}\mathbf{V}^{\top} \end{bmatrix}$$
Number of output channels induces a rank constraint

Proof of SDP tightness

Suffices to show that there exists a rank 1 solution

Boils down to a natural fact about convolutions

Lemma For any $1 \le K \le D$, and for any vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^K$, there exists a vector $\mathbf{c} \in \mathbb{R}^K$ such that $\mathbf{a} \star \mathbf{a} + \mathbf{b} \star \mathbf{b} = \mathbf{c} \star \mathbf{c}$, where convolutions are w.r.t. dimension D.

To show this fact, we leverage the **polynomial representation of convolutions** to show that it suffices to construct a polynomial p_c satisfying the following identity:

$$x^{K-1}p_{\mathbf{c}}(x)p_{\mathbf{c}}(1/x) = x^{K-1}p_{\mathbf{a}}(x)p_{\mathbf{a}}(1/x) + x^{K-1}p_{\mathbf{b}}(x)p_{\mathbf{b}}(1/x)$$

Extensions

We extend our results to networks with multi-channel inputs.

- No longer get independence for any $C \ge 1$
- We show $\mathcal{R}_{\Phi}(f)$ is independent of C as long as $C \ge R^* K$.

Conjecture: $\mathcal{R}_{\Phi}(f)$ is independent of C as long as $C \ge R$.

We empirically connect our results to the implicit regularization of gradient descent.

- Asymptotic behavior on 2-layer linear CNNs appears to be invariant for $C \ge R$ on MNIST and CIFAR-10

Conclusion and Future Work

We studied the induced bias of the l_2 norm of the weights for two-layer linear CNNs.

We showed that for single-channel inputs, the induced regularizer is **independent of the number of output channels** regardless of the kernel size.

We partially generalized this to multi-channel inputs and empirically connected it to the implicit regularization of gradient descent.

Future work:

- Prove conjecture for multi-channel inputs
- Study the role of other architectural features (e.g. pooling, depth, nonlinearities, etc.)