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“The size [magnitude] of the weights is more important than the size
[number of parameters] of the network.” (Bartlett, ‘97)

The £2 norm of the weights is “controlled” during training:

- Implicit regularization of gradient descent (e.g. Nacson et al.
‘19, Lyu and Li ‘20, etc.)
- Explicit regularization (e.g. weight decay, etc.)

How does controlling the {2 norm affect which functions are learned?
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From Parameter Space to Function Space

The £ norm of the network weights is a parameter space view.
But how should this be interpreted in function space?

Induced regularizer = the minimum norm of weights needed to realize a function

using a given network architecture or model class
Model class

—
d(0; x)

Ro(f) = igf 18]35 s.t., Vx, f(x)

\ Function on input space
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Ro(f) = inf 18]35 s.t., Vx, f(x) = ®(8;x)

Fully connected networks: £ norm of the linear predictor (Gunasekar et al., 2018)

Diagonal networks with L layers: £, norm of the linear predictor (Gunasekar et al., 2018)

Linear convolutional networks with full-dimensional kernels: £: norm of the predictor in
Fourier space (Gunasekar et al., 2018, Pilanci and Ergen ‘20, Yun et al. ‘21)

Infinite-width two-layer ReLU networks: {: norm of the partial derivatives of the Radon
transform of the function (Savarese et al. ‘19, Pilanci and Ergen ‘20)

Our focus: multi-channel linear convolutional networks with arbitrary kernel size




2-Layer Linear Convolutional Neural Networks
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Main Theorem

Theorem: For networks with single-channel inputs, the induced regularizer
Ro(f) isindependent of the number of output channels C for any kernel size K.

Proof sketch:
- Need to analyze R4(f) implicitly since it does not appear to have a simple closed-form
- Key technical tool: We express R4(f) as a semidefinite program with a rank <= C constraint.
- Tightness of SDP relaxation < independence of the induced regularizer to C.
- Main part of proof: showing tightness of the SDP relaxation



Induced Regularizer Definition for CNNs
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Proof of SDP tightness

Suffices to show that there exists a rank 1 solution

Boils down to a natural fact about convolutions

Lemma  For any 1 < K < D, and for any vectors a,b € RX, there exists a vector c € RE such
that axa + b xb = c x ¢, where convolutions are w.r.t. dimension D.

To show this fact, we leverage the polynomial representation of convolutions to show that it
suffices to construct a polynomial p_ satisfying the following identity:

2 pe(@)pe(1/2) = 2 pa(2)pa(l/z) + 2" pb(2)pn(1/2)



Extensions

We extend our results to networks with multi-channel inputs.
- Nolonger get independence forany C > 1
- Weshow Re(f) isindependent of Caslongas C =R * K.

| Conjecture: R4(f) isindependent of Caslongas C 2R.

We empirically connect our results to the implicit regularization of gradient descent.
- Asymptotic behavior on 2-layer linear CNNs appears to be mvar:ant for C > R on MNIST and CIFAR-10
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Conclusion and Future Work

We studied the induced bias of the £2 norm of the weights for two-layer linear CNNs.

We showed that for single-channel inputs, the induced regularizer is independent of the number of
output channels regardless of the kernel size.

We partially generalized this to multi-channel inputs and empirically connected it to the implicit
regularization of gradient descent.

Future work:
- Prove conjecture for multi-channel inputs
- Study the role of other architectural features (e.g. pooling, depth, nonlinearities, etc.)



